Let $(\Omega,\mathcal A,\operatorname P)$ be a probability space and $\mathcal F_i\subseteq\mathcal A$.
Remember that $\mathcal F_1$ and $\mathcal F_2$ are called ($\operatorname P$)-independent if $$\operatorname P[A_1\cap A_2]=\operatorname P[A_1]\operatorname P[A_2]\;\;\;\text{for all }A_i\in\mathcal F_i\tag1.$$ If $\mathcal F_2$ is a $\sigma$-algebra, then $(1)$ is equivalent to $$\operatorname P\left[A_1\mid\mathcal F_2\right]=\operatorname P[A_1]\;\;\;\text{for all }A_1\in\mathcal F_1\tag2.$$
It's trivial to see that, if
- $\mathcal F_1$ and $\mathcal F_3$ are independent; and
- $\mathcal F_2$ and $\mathcal F_3$ are independent,
then 3. $\mathcal F_1\cup\mathcal F_2$ and $\mathcal F_3$ are independent.
On the other hand, (1.) and (2.) do not imply that
- $\sigma(\mathcal F_1\cup\mathcal F_2)$ and $\mathcal F_3$ are independent.
Question: If we assume (1.), (2.) and additionally
- $\mathcal F_1$ and $\mathcal F_2$ are independent,
can we then conclude (4.)? (Maybe, if necessary, assuming that $\mathcal F_i$ is a $\sigma$-algebra).