Did I show this properly? Any mistakes, any steps left out? Thank you. $$$$
Show that if $P$ is an invertible $m$ x $m$ matrix, then$rank(PA)=rank(A)$.
solution:
$col(PA)=PA$x
$col(PA)=P(A$x$)$
$col(A)⊆col(PA)$
$rank(A)≤rank(PA)$
$nul(PA)=$x such that $PA$x$=0$
$nul(PA)=$x such that $P(A$x$)=0$
$nul(A)⊆nul(PA)$
$n-rank(A)≤n-rank(PA)$
$rank(PA)≤rank(A)$
$rank(PA)=rank(A)$
Part two: Now, use the above exercise to show that: if $Q$ is invertible, then rank $AQ$= rank $A$
From the above, we know that $rank(Q^TA^T)=rank(A^T)$.
$rank(Q^TA^T)=rank((AQ)^T)=rank(AQ)$
$rank(A^T)=rank(A)$
so, rank $AQ$= rank $A$.