$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\bbox[5px,#ffd]{\on{I}\pars{a,b} \equiv \left.\int_{0}^{\infty}{b\ln\pars{1 + ax} - a\ln\pars{1 + bx} \over x^{2}}\,\dd x
\,\right\vert_{a,\, b\ \in\ \mathbb{R}_{\, >\, 0}}}}$
Lets consider
$\ds{\bbox[5px,#ffd]{\left.\int_{0}^{\infty}
{\ln\pars{1 + px}\,x^{\nu - 2}}\,\,\dd x
\,\right\vert_{%
\substack{p\ >\ 0 \\[1mm] 0\ <\ \nu\ <\ 1}}}}$ which I'll evaluate by means of the
Ramanujan's Master Theorem. Note that
\begin{align}
\ln\pars{1 + px} & =
-\sum_{k = 1}^{\infty}{\pars{-px}^{k} \over k}
\\[2mm] & =
\sum_{k = 0}^{\infty}\braces{\color{red}
{-\bracks{k \not= 0}\Gamma\pars{k}p^{k}}}
{\pars{-x}^{k} \over k!}
\end{align}
Then,
\begin{align}
&\bbox[5px,#ffd]{\left.\int_{0}^{\infty}
{\ln\pars{1 + px}\,x^{\pars{\color{red}{\nu - 1}} - 1}}\,\,\dd x
\,\right\vert_{\substack{p\ >\ 0 \\[1mm] 0\ <\ \nu\ <\ 1}}}
\\[5mm] = &\
\Gamma\pars{\nu - 1}
\braces{-\bracks{1 - \nu \not= 0}\Gamma\pars{1 - \nu}p^{1 - \nu}}
\\[5mm] = &\
-{\Gamma\pars{\nu} \over \nu - 1}\,\,
{\Gamma\pars{1 - \nu}p^{1 - \nu}} =
{p^{1 - \nu} \over 1 - \nu}\,{\pi \over \sin\pars{\pi\nu}}
\end{align}
\begin{align}
\on{I}\pars{a,b} & \equiv
\bbox[5px,#ffd]{\left.\int_{0}^{\infty}{b\ln\pars{1 + ax} - a\ln\pars{1 + bx} \over x^{2}}\,\dd x
\,\right\vert_{a,\, b\ \in\ \mathbb{R}_{\, >\, 0}}}
\\[5mm] & =
\lim_{\nu\ \to\ 0^{+}}\,\,\bracks{%
b\,{a^{1 - \nu} \over 1 - \nu}\,{\pi \over \sin\pars{\pi\nu}}
-
a\,{b^{1 - \nu} \over 1 - \nu}
\,{\pi \over \sin\pars{\pi\nu}}}
\\[5mm] & =
\pi\lim_{\nu\ \to\ 0^{+}}\,\,
{b\,a^{1 - \nu} - a\,b^{1 - \nu} \over \sin\pars{\pi\nu}} \\[5mm] = &\
\pi\lim_{\nu\ \to\ 0^{+}}\,\,
{-b\,a^{1 - \nu}\,\ln\pars{a} + a\,b^{1 - \nu}\,\ln\pars{b} \over \cos\pars{\pi\nu}\pi}
\\[5mm] = &\
\bbx{ab\ln\pars{b \over a}} \\ &
\end{align}