I am really unsure of how to answer this as I have tried taking out n and using the ratio lemma and am still confused!
-
Welcome to math.se! Please see here for how to format math in your posts. – diracdeltafunk Oct 29 '20 at 20:05
4 Answers
Yes taking out $n$ is a good idea but $3n^2$ is a better one to obtain
$$(3n^2 + n)^{1/n}=(3n^2)^\frac1n\left(1 + \frac1{3n}\right)^{1/n}$$
and since
$$\left(1 + \frac1{3n}\right)^{1/n} \to 1^0=1$$
we reduce to evaluate the limit for $(3n^2)^\frac1n=3^\frac1n \,\left(n^\frac1n\right)^2$.
As an alternative we can use that
$$1=1^\frac1n \le (3n^2 + n)^{1/n}\le (4n^2)^{1/n} =4^\frac1n \,\left(n^\frac1n\right)^2$$
- 154,566
$$L=\lim_{n \to \infty}(3n^2 + n)^{1/n}$$ Apply Cauchy-D'Alembert criterion: $$L=\lim_{n \to \infty}\dfrac {3n^2+7n+ 4}{3n^2+n}=\lim_{n \to \infty}\dfrac {3n^2}{3n^2}$$ $$\implies L=1$$
- 40,625
Try to factor $3n^2$ out.
$$(3n^2 + n)^{\frac{1}{n}} = (3n^2)^\frac{1}{n}(1 + \frac{1}{3n})^{\frac{1}{n}}$$
Now notice that
$$\lim_{n \rightarrow \infty} (3n^2)^\frac{1}{n} = 1$$ $$\lim_{n \rightarrow \infty} (1 + \frac{1}{3n})^{\frac{1}{n}} = 1$$
Hence
$$\lim_{n \rightarrow \infty} [(3n^2 + n)^{\frac{1}{n}}] = \lim_{n \rightarrow \infty} [(3n^2)^\frac{1}{n}(1 + \frac{1}{3n})^{\frac{1}{n}}] = 1 $$
- 641
$$L=\underset{n\to \infty }{\text{lim}}\left(3 n^2+n\right)^{1/n}$$ Take the logarithm of the limit $$\log L=\log \underset{n\to \infty }{\text{lim}}\left(3 n^2+n\right)^{1/n}=\underset{n\to \infty }{\text{lim}}\frac{\log \left(3 n^2+n\right)}{n}=0$$ If $\log L=0$ then $L=1$
- 26,371