Let,
$S=\begin{pmatrix} 0 &-1 \\ 1 & 0 \end{pmatrix}$
and
$T=\begin{pmatrix} 1 &1 \\ 0 & 1 \end{pmatrix}$ .
The matrices $S$ and $T$ generate $SL_2(\mathbb Z)$. The matrix $S$ has order $4 \: (S^2 = −I_2)$, while $T$ has infinite order.
Now consider we have an arbitrary element $\beta \in SL_2(\mathbb Z)$.
What is the process/ algorithm to determine/detect whether $\beta$ is an element of finite or infinite order?