$$\lim_{x\to\ 0^+}(e^x-1)\ln(\ln(1+x))$$
Here to evaluate the limit I used the equivalence $\ln(u+1)\sim u$ twice :
$$\lim_{x\to\ 0^+}(e^x-1)\ln(\ln(1+x))=\lim_{x\to 0^+}(e^x-1)\times(x-1)=(1-1)\times(0-1)=0$$
But the book I am reading write the expression as $\cfrac{\ln(\ln(1+x))}{\cfrac1{e^x-1}}$ then applied L'Hopital Rule and at the end it get $0$ too after relatively long calculation.
I wonder is my approach valid ?