An orthogonal matrix of eigenvectors is given by
$$
P= \tiny
\left(
\begin{array}{rrrrrrrrrr}
1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 2 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 3 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 4 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 5 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 6 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9
\end{array}
\right)
\left(
\begin{array}{rrrrrrrrrr}
\frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{12}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{20}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{30}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{42}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{56}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{72}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{90}}
\end{array}
\right).
$$
multiplied on the right by a diagonal matrix to adjust each column to vector length $1$
The two matrices, full size, are
$$
\left(
\begin{array}{rrrrrrrrrr}
1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 2 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 3 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 4 & -1 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 5 & -1 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 6 & -1 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & -1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrrrrrrrrr}
\frac{1}{\sqrt{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{6}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{12}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{20}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{30}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{42}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{56}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{72}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{90}}
\end{array}
\right).
$$