There is a standard "trick" for evaluating this. First, note that
$$
\int_{\mathbb{R}}e^{-\pi x^2}\,\mathrm{d}x=1\tag{1}
$$
Multiplying $(1)$ together $n$ times, we get
$$
\int_{\mathbb{R}^n}e^{-\pi x^2}\,\mathrm{d}x=1\tag{2}
$$
Converting $(2)$ to polar coordinates yields
$$
\int_0^\infty\omega_{n-1}e^{-\pi r^2}r^{n-1}\,\mathrm{d}r=1\tag{3}
$$
where $\omega_{n-1}$ is the area of the $n-1$ dimensional unit sphere. Compute $\omega_{n-1}$ as follows
$$
\begin{align}
1
&=\int_0^\infty\omega_{n-1}e^{-\pi r^2}r^{n-1}\,\mathrm{d}r\\
&=\frac12\int_0^\infty\omega_{n-1}e^{-\pi r^2}r^{n-2}\,\mathrm{d}r^2\\
&=\frac{\pi^{-n/2}}2\int_0^\infty\omega_{n-1}e^{-s}s^{n/2-1}\,\mathrm{d}s\\
&=\frac{\pi^{-n/2}}2\omega_{n-1}\Gamma(n/2)\\
\omega_{n-1}&=\frac{2\pi^{n/2}}{\Gamma(n/2)}\tag{4}
\end{align}
$$
Now, we can compute the volume of the $n$ dimensional sphere, by
$$
\begin{align}
\int_0^r\omega_{n-1}t^{n-1}\,\mathrm{d}t
&=\frac{\omega_{n-1}}{n}r^n\\
&=\frac{2\pi^{n/2}}{n\Gamma(n/2)}r^n\\[6pt]
&=\left\{\begin{array}{}
\frac{\pi^{n/2}}{(n/2)!}r^n&\quad\text{if $n$ is even}\\[6pt]
\frac{2^n\left(\frac{n-1}{2}\right)!}{n!}\pi^{\frac{n-1}{2}}r^n&\quad\text{if $n$ is odd}
\end{array}\right.\tag{5}
\end{align}
$$