Let $A\in\mathbb{C}^{n\times n}$. Define the matrix exponential $$ \mathrm{e}^A=\lim_{N\rightarrow\infty}\sum_{j=0}^N \dfrac{A^j}{j!}. $$ Prove that $$\mathrm{e}^A=\lim_{N\rightarrow\infty}(I+\frac{A}{N})^N.$$
My ODE textbook uses the proposition directly. The proposition is obvious when $n=1$, but I still want to get I valid proof for the general case. It is easy to get $$ (I+\frac{A}{N})^N=I+A+\dfrac{1}{2!}(1-\dfrac{1}{N})A^2+\cdots+\dfrac{1}{N!}(1-\dfrac{1}{N})\cdots (1-\dfrac{N-1}{N})A^N $$ I want to compare the matrix norm then, but it seems do not work.
The main problem is we cannot directly use inequality here. Appreciate any help!