Let be the sum: $$\begin{align} s&= i+i^2+i^3+\cdots+i^n\\ &= i-1-i+1+i-\cdots\\ &=(1+i)(1-1+1-1+\cdots) \end{align}$$ As Grandi's sum is equal to $1/2$, so: $s=\frac12(1+i)$.
But, $s$ is also a geometric series, so: $s=\displaystyle\frac{(1-i^{(n+1)})}{(1-i)}$
So: $$\frac12(1+i) = \frac{(1-i^{(n+1)})}{(1-i)}$$
Which means: $$1-i^{(n+1)}=\frac{(1+i)(1-i)} 2=1$$
So $i^n=0$ when $n$ is infinite.