-4

Let be the sum: $$\begin{align} s&= i+i^2+i^3+\cdots+i^n\\ &= i-1-i+1+i-\cdots\\ &=(1+i)(1-1+1-1+\cdots) \end{align}$$ As Grandi's sum is equal to $1/2$, so: $s=\frac12(1+i)$.

But, $s$ is also a geometric series, so: $s=\displaystyle\frac{(1-i^{(n+1)})}{(1-i)}$

So: $$\frac12(1+i) = \frac{(1-i^{(n+1)})}{(1-i)}$$

Which means: $$1-i^{(n+1)}=\frac{(1+i)(1-i)} 2=1$$

So $i^n=0$ when $n$ is infinite.

Blue
  • 75,673

1 Answers1

1

The given series is divergent.

If you want to apply Cesàro summation you must proceed as follows $$s_n=\sum _{k=1}^n i^k=\left(\frac{1}{2}-\frac{i}{2}\right) \left(-1+i^n\right)$$ $$a_m=\sum _{n=1}^m s_n=-\frac{1}{2} i \left(i^m-(1+i) m-1\right)$$ and finally $$S=\underset{m\to \infty }{\text{lim}}\frac{a_m}{m}=-\frac{1}{2}+\frac{i}{2}$$

Raffaele
  • 26,371