We know that:
$$
\begin{cases}
5^{2^{n-2}}\equiv1\pmod{2^n}\\
\begin{aligned}
\big|(\mathbb{Z}/2^n\mathbb{Z})^{\times}\big|&=\varphi(2^n)\\
&=2^{n-1}(2-1)\\
&=2^{n-1}
\end{aligned}\\
5^{2^{n-3}}\equiv2^{n-1}+1\pmod{2^n}\\
\begin{aligned}
-5^{2^{n-3}}&\equiv2^n-(2^{n-1}+1)\pmod{2^n}\\
&=2^{n-1}-1\pmod{2^n}
\end{aligned}\\
2^n-1\equiv-1\pmod{2^n}\\
\end{cases}
$$
Hence:
$$
(\mathbb{Z}/2^n\mathbb{Z})^{\times}\cong\langle5\rangle\times\langle-1\rangle=\mathbb Z_{2^{n-2}}\times\mathbb Z_2.
$$
A group $G$ is cyclic if and only if it possesses a unique subgroup of each order dividing $|G|$ .
Since both $\langle5\rangle$ and $\langle-1\rangle$ are cyclic, $(2^{n-1}+1)$ and $(-1)$ is the unique element of order $2$ in $\mathbb Z_{2^{n-2}}$ and $\mathbb Z_2$, respectively.
Thus, the elements of order smaller than $2$ in $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ and $\mathbb Z_{2^{n-2}}\times\mathbb Z_2$ are:
$$
\left.\begin{cases}
\begin{gathered}
2^{n-1}+1\ ,\\-1\ ,\\2^{n-1}-1\ ,\\1
\end{gathered}
\end{cases}\right\}\cong
\left.\begin{cases}
\begin{gathered}
(2^{n-1}+1\,,1)\ ,\\(1\,,-1)\ ,\\(2^{n-1}+1\,,-1)\ ,\\(1\,,1)
\end{gathered}
\end{cases}\right\}\ ,
$$
respectively, and they form a group which is isomorphic to $\mathbf{V}_4$ the Klein $4$-group.