I want to understand whether in the evaluation of the following limit (without L'Hospital),
$$\lim_{x\to\infty}\left(\frac{1+x^2}{x+x^2}\right)^{2x}=\frac1{e^2}$$
the following step is correct:
$$\begin{aligned} \lim_{x\to\infty}\left(\frac{1+x^2}{x+x^2}\right)^{2x}&=\lim_{x\to\infty}\left(\frac{x\left(\frac1x+x\right)}{x\left(1+x\right)}\right)^{2x} \stackrel{\color{red}{?}}=\lim_{x\to\infty}\left(\frac{1\cdot\left(\color{red}{0}+x\right)}{1\cdot\left(1+x\right)}\right)^{2x}\\ &=\lim_{x\to\infty}\left(\frac{x}{1+x}\right)^{2x}=\cdots=\frac1{e^2}. \end{aligned}$$ Basically in the step in the question mark, I brought in the limit operator, evaluated only the limit of $1/x$ and then brought it back out. Is this step correct? If so, why not?