1

According to wolframalpha,

$$\sum _ { n = 1 } ^ { \infty } n \binom {2 n} {n} ( - z )^n = - \frac { 2 z } { ( 4 z + 1 ) ^ { 3 / 2 } } \text { when } 4 | z | < 1$$ However I have been unable to find how to get this result.

player3236
  • 16,413
r00r
  • 436

2 Answers2

2

By the generalized binomial theorem,$$(1+4z)^{-1/2}=\sum_{n\ge0}\frac{(-1/2)_n}{n!}4^nz^n=\sum_{n\ge0}\binom{2n}{n}(-z)^n.$$Differentiating,$$-2(1+4z)^{-3/2}=\sum_{n\ge0}\binom{2n}{n}(-1)^nnz^{n-1}=\sum_{n\ge1}\binom{2n}{n}(-1)^nnz^{n-1}.$$Multiplying by $z$,$$-2z(1+4z)^{-3/2}=\sum_{n\ge1}\binom{2n}{n}n(-z)^n.$$

J.G.
  • 115,835
0

$$n\binom{2n}n=n\cdot\dfrac{(2n!)}{n! n!}=2\binom{2n-1}{n-1}$$

Now like Calculating $1+\frac13+\frac{1\cdot3}{3\cdot6}+\frac{1\cdot3\cdot5}{3\cdot6\cdot9}+\frac{1\cdot3\cdot5\cdot7}{3\cdot6\cdot9\cdot12}+\dots? $.

comparing the expansion of $(1+x)^m$ with $$2\sum_{n=1}^\infty\binom{2n-1}{n-1} (-z)^{n-1}$$

$$mx=2\binom31(-z)^{2-1}\text{ and }\dfrac{m(m-1)}2x^2=2\binom52(-z)^{3-1}$$

to find $m=-\dfrac32, x=4z$