Let
- $(\Omega,\mathcal A,\operatorname P)$ be a probability space;
- $(\mathcal F_t)_{t\ge0}$ be a filtration on $(\Omega,\mathcal A,\operatorname P)$;
- $E$ be a $\mathbb R$-Banach space;
- $(L_t)_{t\ge0}$ be a $E$-valued process on $(\Omega,\mathcal A,\operatorname P)$.
Remember that $L$ is called $\mathcal F$-Lévy if
- $L$ is $\mathcal F$-adapted;
- $L_0=0$;
- $L_{s+t}-L_s$ and $\mathcal F_s$ are independent for all $t\ge s\ge0$;
- $L_{s+t}-L_s\sim L_s$ for all $t\ge s\ge0$.
Assume $L$ is $\mathcal F$-Lévy. Let $\tau$ be a $\mathcal F$-stopping time, $\tilde\Omega:=\{\tau<\infty\}$, $\tilde{\mathcal A}:=\left.\mathcal A\right|_{\tilde\Omega}$, $\tilde{\operatorname P}:=\left.\operatorname P\right|_{\tilde\Omega}$, $$\mathcal G_t:=\mathcal F_{\tau+t}\;\;\;\text{for }t\ge0$$ and $$X_t(\omega):=L_{\tau+t}(\omega)-L_\tau(\omega)\;\;\;\text{for }(\omega,t)\in\tilde\Omega\times[0,\infty).$$
How can we show that $X$ is a $\mathcal G$-Lévy process on $(\tilde\Omega,\tilde{\mathcal A},\tilde{\operatorname P})$?
(1.) and (2.) are clearly trivial.
I think the easiest way to show (3.) and (4.) is to approximate $\tau$ in a suitable way. So, let's first assume that $\tau$ is finite and $k:=\left|\tau(\Omega)\right|\in\mathbb N$. Then, $$\tau(\Omega)=\{t_1,\ldots,t_k\}\tag1$$ for some $0\le t_1<\cdots<t_k$. Since $\{\tau=t_i\}\in\mathcal F_{t_i}\subseteq\mathcal F_{t_i+s}$, we easily obtain \begin{equation}\begin{split}\operatorname P\left[X_{s+t}-X_s\in B\right]&=\sum_{i=1}^k\operatorname P\left[\tau=t_i,L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&\sum_{i=1}^k\operatorname P\left[\tau=t_i\right]\operatorname P\left[L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&\operatorname P\left[L_t\in B\right]\sum_{i=1}^k\operatorname P\left[\tau=t_i\right]=\operatorname P\left[L_t\in B\right]\end{split}\tag2\end{equation} for all $B\in\mathcal B(E)$ and $s,t\ge0$; which is (4.).
Analogously¹, since $L_{t_i+s+t}-L_{t_i+s}$ and $\mathcal F_{t_i+s}$ are independent and $\{\tau=t_i\}\in\mathcal F_{t_i}\subseteq\mathcal F_{t_i+s}$ for all $i\in\{1,\ldots,k\}$, \begin{equation}\begin{split}\operatorname P\left[X_{s+t}-X_s\in B\mid\mathcal G_s\right]&=\sum_{i=1}^k\operatorname P\left[\tau=t_i,L_{t_i+s+t}-L_{t_i+s}\in B\mid\mathcal F_{\tau+s}\right]\\&=\sum_{i=1}^k1_{\left\{\:\tau\:=\:t_i\:\right\}}\operatorname P\left[L_{t_i+s+t}-L_{t_i+s}\in B\mid\mathcal F_{t_i+s}\right]\\&=\sum_{i=1}^k1_{\left\{\:\tau\:=\:t_i\:\right\}}\operatorname P\left[L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&=\sum_{i=1}^k\operatorname P\left[\tau=t_i,L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&=\operatorname P\left[X_{s+t}-X_s\in B\right]\end{split}\tag3\end{equation} almost surely for all $B\in\mathcal B(E)$; which is (3.).
Can we derive the general case by approximating $\tau$ with $\mathcal F$-stopping times of the formerly considered form?
EDIT 1: Both, $(2)$ and $(3)$, should hold line by line when $\tau$ is finite and $\tau(\Omega)$ is countable. We simply need to use the sums $\sum_{r\in\tau(\Omega)}\operatorname P\left[\tau=r,L_{r+s+t}-L_{r+s}\in B\right]$ and $\sum_{r\in\tau(\Omega)}\operatorname P\left[\tau=r,L_{r+s+t}-L_{r+s}\in B\mid\mathcal F_{\tau+s}\right]$ instead.
EDIT 2: Now assume $\tau$ is only finite. Let $\tau_n$ be a $\mathcal F$-stopping time² on $(\Omega,\mathcal A,\operatorname P)$ for $n\in\mathbb N$, such that $\tau_n(\Omega)$ is countable and $$\tau_n\ge\tau_{n+1}\tag4$$ for all $n\in\mathbb N$ and $$\tau_n\xrightarrow{n\to\infty}\tau\tag5.$$
Let $X^{(n)}_t:=L_{\tau_n+t}-L_{\tau}$ and $\mathcal G^{(n)}_t:=\mathcal F_{\tau_n+t}$ for $t\ge0$. By $(4)$, $$\mathcal G^{(n)}_t\supseteq\mathcal G^{(n+1)}_t\;\;\;\text{for all }t\ge0\tag6$$ for all $n\in\mathbb N$. Now assume $L$ is right-continuous. Then, by $(4)$ and $(5)$, $$X^{(n)}_t\xrightarrow{n\to\infty}X_t\;\;\;\text{for all }t\ge0\tag7.$$
Let $B\in\mathcal B(E)$ and $s,t\ge0$. By what we've already shown, $$\operatorname P\left[X^{(n)}_{s+t}-X^{(n)}_s\in B\mid\mathcal G^{(n)}_s\right]=\operatorname P\left[X^{(n)}_{s+t}-X^{(n)}_s\in B\right]\tag8$$
Using $(7)$ and the dominated convergence theorem, the right-hand side of $(8)$ should converge to $\operatorname P\left[X_{s+t}-X_s\in B\right]$.
What can we do with the left-hand side? Maybe $(6)$ is the crucial ingredient which allows us to obtain convergence to $\operatorname P\left[X_{s+t}-X_s\in B\mid\mathcal G_s\right]$ as desired ...
Now, in order to conclude for general finite $\tau$, I guess we need to assume right-continuity, but how do we then need to argue exactly?
Remark: I'm also unsure whether we need to impose further assumptions on $(\mathcal F_t)_{t\ge0}$ like completeness or right-continuity.
¹ If $Y\in\mathcal L^1(\operatorname P;E)$, then $$\operatorname E\left[1_{\left\{\:\tau\:=\:t\:\right\}}Y\mid\mathcal F_\tau\right]=1_{\left\{\:\tau\:=\:t\:\right\}}\operatorname E\left[X\mid\mathcal F_t\right]\;\;\;\text{almost surely}.$$
² We could, for example, take