2

Let

  • $(\Omega,\mathcal A,\operatorname P)$ be a probability space;
  • $(\mathcal F_t)_{t\ge0}$ be a filtration on $(\Omega,\mathcal A,\operatorname P)$;
  • $E$ be a $\mathbb R$-Banach space;
  • $(L_t)_{t\ge0}$ be a $E$-valued process on $(\Omega,\mathcal A,\operatorname P)$.

Remember that $L$ is called $\mathcal F$-Lévy if

  1. $L$ is $\mathcal F$-adapted;
  2. $L_0=0$;
  3. $L_{s+t}-L_s$ and $\mathcal F_s$ are independent for all $t\ge s\ge0$;
  4. $L_{s+t}-L_s\sim L_s$ for all $t\ge s\ge0$.

Assume $L$ is $\mathcal F$-Lévy. Let $\tau$ be a $\mathcal F$-stopping time, $\tilde\Omega:=\{\tau<\infty\}$, $\tilde{\mathcal A}:=\left.\mathcal A\right|_{\tilde\Omega}$, $\tilde{\operatorname P}:=\left.\operatorname P\right|_{\tilde\Omega}$, $$\mathcal G_t:=\mathcal F_{\tau+t}\;\;\;\text{for }t\ge0$$ and $$X_t(\omega):=L_{\tau+t}(\omega)-L_\tau(\omega)\;\;\;\text{for }(\omega,t)\in\tilde\Omega\times[0,\infty).$$

How can we show that $X$ is a $\mathcal G$-Lévy process on $(\tilde\Omega,\tilde{\mathcal A},\tilde{\operatorname P})$?

(1.) and (2.) are clearly trivial.

I think the easiest way to show (3.) and (4.) is to approximate $\tau$ in a suitable way. So, let's first assume that $\tau$ is finite and $k:=\left|\tau(\Omega)\right|\in\mathbb N$. Then, $$\tau(\Omega)=\{t_1,\ldots,t_k\}\tag1$$ for some $0\le t_1<\cdots<t_k$. Since $\{\tau=t_i\}\in\mathcal F_{t_i}\subseteq\mathcal F_{t_i+s}$, we easily obtain \begin{equation}\begin{split}\operatorname P\left[X_{s+t}-X_s\in B\right]&=\sum_{i=1}^k\operatorname P\left[\tau=t_i,L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&\sum_{i=1}^k\operatorname P\left[\tau=t_i\right]\operatorname P\left[L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&\operatorname P\left[L_t\in B\right]\sum_{i=1}^k\operatorname P\left[\tau=t_i\right]=\operatorname P\left[L_t\in B\right]\end{split}\tag2\end{equation} for all $B\in\mathcal B(E)$ and $s,t\ge0$; which is (4.).

Analogously¹, since $L_{t_i+s+t}-L_{t_i+s}$ and $\mathcal F_{t_i+s}$ are independent and $\{\tau=t_i\}\in\mathcal F_{t_i}\subseteq\mathcal F_{t_i+s}$ for all $i\in\{1,\ldots,k\}$, \begin{equation}\begin{split}\operatorname P\left[X_{s+t}-X_s\in B\mid\mathcal G_s\right]&=\sum_{i=1}^k\operatorname P\left[\tau=t_i,L_{t_i+s+t}-L_{t_i+s}\in B\mid\mathcal F_{\tau+s}\right]\\&=\sum_{i=1}^k1_{\left\{\:\tau\:=\:t_i\:\right\}}\operatorname P\left[L_{t_i+s+t}-L_{t_i+s}\in B\mid\mathcal F_{t_i+s}\right]\\&=\sum_{i=1}^k1_{\left\{\:\tau\:=\:t_i\:\right\}}\operatorname P\left[L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&=\sum_{i=1}^k\operatorname P\left[\tau=t_i,L_{t_i+s+t}-L_{t_i+s}\in B\right]\\&=\operatorname P\left[X_{s+t}-X_s\in B\right]\end{split}\tag3\end{equation} almost surely for all $B\in\mathcal B(E)$; which is (3.).

Can we derive the general case by approximating $\tau$ with $\mathcal F$-stopping times of the formerly considered form?

EDIT 1: Both, $(2)$ and $(3)$, should hold line by line when $\tau$ is finite and $\tau(\Omega)$ is countable. We simply need to use the sums $\sum_{r\in\tau(\Omega)}\operatorname P\left[\tau=r,L_{r+s+t}-L_{r+s}\in B\right]$ and $\sum_{r\in\tau(\Omega)}\operatorname P\left[\tau=r,L_{r+s+t}-L_{r+s}\in B\mid\mathcal F_{\tau+s}\right]$ instead.

EDIT 2: Now assume $\tau$ is only finite. Let $\tau_n$ be a $\mathcal F$-stopping time² on $(\Omega,\mathcal A,\operatorname P)$ for $n\in\mathbb N$, such that $\tau_n(\Omega)$ is countable and $$\tau_n\ge\tau_{n+1}\tag4$$ for all $n\in\mathbb N$ and $$\tau_n\xrightarrow{n\to\infty}\tau\tag5.$$

Let $X^{(n)}_t:=L_{\tau_n+t}-L_{\tau}$ and $\mathcal G^{(n)}_t:=\mathcal F_{\tau_n+t}$ for $t\ge0$. By $(4)$, $$\mathcal G^{(n)}_t\supseteq\mathcal G^{(n+1)}_t\;\;\;\text{for all }t\ge0\tag6$$ for all $n\in\mathbb N$. Now assume $L$ is right-continuous. Then, by $(4)$ and $(5)$, $$X^{(n)}_t\xrightarrow{n\to\infty}X_t\;\;\;\text{for all }t\ge0\tag7.$$

Let $B\in\mathcal B(E)$ and $s,t\ge0$. By what we've already shown, $$\operatorname P\left[X^{(n)}_{s+t}-X^{(n)}_s\in B\mid\mathcal G^{(n)}_s\right]=\operatorname P\left[X^{(n)}_{s+t}-X^{(n)}_s\in B\right]\tag8$$

Using $(7)$ and the dominated convergence theorem, the right-hand side of $(8)$ should converge to $\operatorname P\left[X_{s+t}-X_s\in B\right]$.

What can we do with the left-hand side? Maybe $(6)$ is the crucial ingredient which allows us to obtain convergence to $\operatorname P\left[X_{s+t}-X_s\in B\mid\mathcal G_s\right]$ as desired ...

Now, in order to conclude for general finite $\tau$, I guess we need to assume right-continuity, but how do we then need to argue exactly?

Remark: I'm also unsure whether we need to impose further assumptions on $(\mathcal F_t)_{t\ge0}$ like completeness or right-continuity.


¹ If $Y\in\mathcal L^1(\operatorname P;E)$, then $$\operatorname E\left[1_{\left\{\:\tau\:=\:t\:\right\}}Y\mid\mathcal F_\tau\right]=1_{\left\{\:\tau\:=\:t\:\right\}}\operatorname E\left[X\mid\mathcal F_t\right]\;\;\;\text{almost surely}.$$

² We could, for example, take

0xbadf00d
  • 13,422

1 Answers1

2

First of all, note that, say, $Y_n \to Y$ almost surely does not imply $\mathbb{P}(Y_n \in B) \to \mathbb{P}(Y \in B)$. The latter holds only if $B$ is such that $\mathbb{P}(Y \in \partial B)=0$. You can easily see this issue if you consider for instance $Y_n := \frac{1}{n}$ and $B=\{0\}$. As a consequence, we cannot take, in general, the limit on the right-hand side of (8).


Let $f$ be a bounded continuous function. Since $X_t^{(n)} \to X_t$, we have, by the dominated convergence theorem,

$$\mathbb{E}(f(X_{s+t}-X_s) \mid \mathcal{G}_s) = \lim_{n \to \infty} \mathbb{E}(f(X_{s+t}^{(n)}-X_s^{(n)}) \mid \mathcal{G}_s). \tag{1}$$

From $\tau_n \geq \tau$ we see that $\mathcal{G}_s^{(n)} = \mathcal{F}_{\tau_n+s} \supseteq \mathcal{F}_{\tau+s}=\mathcal{G}_s$. Consequently, by the tower property of conditional expectation,

$$ \mathbb{E}(f(X_{s+t}^{(n)}-X_s^{(n)}) \mid \mathcal{G}_s) = \mathbb{E} \bigg [ \mathbb{E}(f(X_{s+t}^{(n)}-X_s^{(n)}) \mid \mathcal{G}_s^{(n)}) \mid \mathcal{G}_s \bigg].$$

By your earlier considerations for stopping times taking only finitely many values, we can compute the right-hand side:

\begin{align*} \mathbb{E}(f(X_{s+t}^{(n)}-X_s^{(n)}) \mid \mathcal{G}_s) &= \mathbb{E} \bigg[ \mathbb{E}(f(X_{s+t}^{(n)}-X_s^{(n)})) \mid \mathcal{G}_s\bigg] \\ &= \mathbb{E}(f(X_{s+t}^{(n)}-X_s^{(n)})). \end{align*}

Plugging this into $(1)$ and using once more the dominated convergence theorem and the right-continuity of the sample paths, we arrive at

$$\mathbb{E}(f(X_{s+t}-X_s) \mid \mathcal{G}_s) = \mathbb{E}(f(X_{t+s}-X_s)),$$

which should be all you need. (At least for the case $\mathbb{P}(\tau<\infty)=1$, which you were considering.)


Proving the assertion for stopping times which may take the value $+\infty$ requires some more work. Define $\tau_n := \min\{\tau \wedge n\}$ and denote by $X^{(n)}$ the corresponding restarted Lévy process with filtration $\mathcal{G}^{(n)}$. Then, by the previous step of the proof,

$$\mathbb{E}(f(X_{t+s}^{(n)}-f(X_s^{(n)}) \mid \mathcal{G}_s^{(n)}) = \mathbb{E}(f(X_{t+s}^{(n)}-X_s^{(n)}))= \mathbb{E}(f(L_t)).$$

Since $\{\tau \leq n\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_n = \mathcal{F}_{\tau \wedge n} \subseteq \mathcal{G}_s^{(n)}$, we can multiply both sides by $1_{\{\tau \leq n\}}$ to obtain that

$$\mathbb{E}(1_{\{\tau \leq n\}} f(X_{t+s}^{(n)}-f(X_s^{(n)}) \mid \mathcal{G}_s^{(n)})=1_{\{\tau \leq n\}} \mathbb{E}(f(L_t)). \tag{2}$$

We would like to let $n \to \infty$. To this end, we first show that

$$\mathbb{E}(1_{\{\tau \leq n\}} f(X_{t+s}^{(n)}-f(X_s^{(n)}) \mid \mathcal{G}_s^{(n)}) \xrightarrow[]{L^1} \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s). \tag{3}$$

By the triangle inequality,

\begin{align*} &\mathbb{E}\bigg|\mathbb{E}(1_{\{\tau \leq n\}} f(X_{t+s}^{(n)}-f(X_s^{(n)}) \mid \mathcal{G}_s^{(n)})- \mathbb{E}(1_{\{\tau <\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s)\bigg| \\&\leq \mathbb{E}\bigg|\mathbb{E}(1_{\{\tau \leq n\}} f(X_{t+s}^{(n)}-f(X_s^{(n)}) \mid \mathcal{G}_s^{(n)})- \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s^{(n)})\bigg|\\ &\quad +\mathbb{E}\bigg| \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s^{(n)})- \mathbb{E}(1_{\{\tau<\infty\}}f(X_{t+s}-X_s) \mid \mathcal{G}_s)\bigg| \\ &=: \Delta_1+\Delta_2. \end{align*}

For the first term we see, using the tower property,

$$\Delta_1 \leq \mathbb{E}(|1_{\{\tau \leq n\}} f(X_{t+s}^{(n)}-X_s^{(n)})-1_{\{\tau<\infty\}} f(X_{t+s}-X_s)|).$$

If $\omega \in \{\tau<\infty\}$, then $X_{r}^{(n)}(\omega)=X_r(\omega)$ for $n=n(\omega)$ sufficiently large, and so the dominated convergence theorem yields $I_1 \to 0$ as $n \to \infty$. On the other hand, $\mathcal{G}_s = \sigma(\bigcup_n \mathcal{G}_s^{(n)})$, see this question, and so Lévy's upwards theorem yields $I_2 \to 0$ as $n \to \infty$. This then proves $(3)$. Because of $(3)$, we can choose an almost surely convergent subsequence

$$\mathbb{E}(1_{\{\tau \leq n_k\}} f(X_{t+s}^{(n_k)}-f(X_s^{(n_k)}) \mid \mathcal{G}_s^{(n_k)}) \xrightarrow[]{\text{a.s.}} \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s). \tag{4}$$

Letting $n \to \infty$ in (2) now gives

$$ \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s) = 1_{\{\tau<\infty\}} \mathbb{E}(f(L_t)). \tag{5}$$

Taking expectation on both sides yields

$$ \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s)) = \mathbb{P}(\tau<\infty) \mathbb{E}(f(L_t)),$$

i.e.

$$\mathbb{E}(f(L_t)) = \frac{1}{\mathbb{P}(\tau<\infty)} \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s)).$$

Plugging this into $(5)$ shows that

$$ \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s) \mid \mathcal{G}_s) = 1_{\{\tau<\infty\}} \frac{1}{\mathbb{P}(\tau<\infty)} \mathbb{E}(1_{\{\tau<\infty\}} f(X_{t+s}-X_s)).$$

If we define a probability measure $\tilde{P}(A) := \frac{\mathbb{P}(A \cap \{\tau<\infty\})}{\mathbb{P}(\tau<\infty)}$ on $\tilde{\Omega} := \{\tau<\infty\}$, then this is equivalent to

$$\mathbb{E}_{\tilde{\mathbb{P}}}(f(X_{t+s}-X_s) \mid \mathcal{G}_s) = \mathbb{E}_{\tilde{\mathbb{P}}}(f(X_{t+s}-X_s)).$$

Pang
  • 399
  • 5
  • 8
saz
  • 120,083
  • Thank you for your answer. In your introductory remark you certainly mean $(8)$ instead of $(7)$. I guess the problem with my dominated convergence theorem is that $Y_n\to Y$ a.s. does not imply $1_B(Y_n)\to1_B(Y)$ a.s. (or at least in probability) so that the dominated convergence theorem is not applicable, right? – 0xbadf00d Oct 29 '20 at 15:16
  • Using the monotonicity of the stopping sequence, the claim itself is surprisingly simple to prove. Thank you for that! Could you write something about how we can finally extend the result to general case (i.e. without assuming $\tau<\infty$)? I guess this shouldn't be too complicated. – 0xbadf00d Oct 29 '20 at 15:35
  • 1
    @0xbadf00d Re your first comment: Yes, exactly. Re your 2nd comment: no, it's actually not so easy; see my edited answer. – saz Oct 29 '20 at 21:42
  • Thank you for the edit. We have shown that $X_{s+t}-X_s$ and $\mathcal G_s$ are independent for all $s,t\ge0$. Can we even show $(X_{s+t}-X_s){t\ge0}$ and $\mathcal G_s$ are independent for all $s\ge0$? This is the result in Theorem 4.12 of the reference of Schilling, but it is established from scratch there. Is what we've shown maybe equivalent to the independence of $(X{s+t}-X_s)_{t\ge0}$ and $\mathcal G_s$? I've asked for that here: https://math.stackexchange.com/q/3890356/47771. – 0xbadf00d Nov 02 '20 at 05:15
  • The claim in this question remains true when we replace right-continuity by "right-continuity in probability", right? The dominated convergence theorem should still be applicable. Or am I missing something? – 0xbadf00d Nov 03 '20 at 09:43
  • And did you notice that $$\operatorname E\left[f\left(X^{(n)}_{s+t}-X^{(n)}_s\right)\mid\mathcal G_s\right]=\operatorname E\left[f(L_t)\right]$$ for all $f\in C_b(E)$, $s,t\ge0$ and $n\in\mathbb N$? So, the second application of the dominated convergence theorem shouldn't be needed. – 0xbadf00d Nov 03 '20 at 09:57
  • @0xbadf00d (a) I don't think so..Here we need right-continuity at a random time and this is not clear from "right-continuity in probability". (If you consider a deterministic time rather than a stopping time $\tau$, then right-continuity in probably would be enoigh, I agree.) (b) Well, yes... but the application of dominated convergence is really not the problem here; it's very straightforward- – saz Nov 04 '20 at 06:09
  • (a) Are you sure that it is a problem that we deal with random times? They converge pointwisely. So, I would expect that the right-continuity in probability is enough, since we should have $X^{(n)}t\xrightarrow{n\to\infty}X_t$ in probability for all $t\ge0$. (b) Yes, but $\operatorname E\left[f\left(X^{(n)}{s+t}-X^{(n)}_s\right)\mid\mathcal G_s\right]=\operatorname E\left[f(L_t)\right]$ additionally yields that $X_t\sim L_t$. And this should even yield $X\sim L$. – 0xbadf00d Nov 04 '20 at 07:01
  • Depends on whether you are talking about assuming right-continuity in probability of $L_t$ or of $X_t$. If you assume it for $L_t$, then we just have $L_s \to L_t$ in probability as $s \downarrow t$. This is not going to imply $L_{\tau+s} \to L_{\tau+t}$ in probability for random times $\tau$, i.e. we are in trouble getting the right-continuity (in probability) of $X_t$. [And re (b): yes, $X$ and $L$ have the same finite-dimensional distributions.) – saz Nov 04 '20 at 07:06
  • (b) They should even have the same distribution as $E^{[0,:\infty)}$-valued random variables. This should be an immediate consequence of the time-homogenecity and Markov property. Or am I missing something? – 0xbadf00d Nov 04 '20 at 07:57
  • Besides the question in my latter comment, I'd really appreciate if you could take a look at this question. I'm sure you can say something on this. – 0xbadf00d Nov 08 '20 at 14:45
  • 1
    @0xbadf00d I have currently other things on my mind. Re your earlier comment: I suppose that they have the same distribution as $E^{[0,\infty)}$-valued random variables if you equip $E^{[0,\infty)}$ with the $\sigma$-algebra generated by the projections. – saz Nov 08 '20 at 15:39
  • Thanks, that's what I meant. – 0xbadf00d Nov 08 '20 at 16:39
  • In light of your identity at the very end of your post, shouldn't we obtain the extension to arbitrary stopping times in a much simpler way from the already proven result for finite stopping times? I've asked a new quesiton for that: https://math.stackexchange.com/q/4276840/47771. Please take a look. – 0xbadf00d Oct 14 '21 at 19:40