$\require{cancel}$Just to be different.
$2^{82}=4^{41}=(5-1)^{41} =\sum_{k=0}^{41} 5^{k}(-1)^{41-k}{41\choose k}$
Now $625= 5^4$ so for all $k\ge 4$ we have $5^{k}(-1)^{41-k}{41\choose k} \equiv 0\pmod{625}$.
So $2^{82} \equiv \sum_{k=0}^3 5^k(-1)^{41-k}{41\choose k}\equiv $
$-1 + 5\cdot 41 - 25\cdot\frac {41\cdot \color{red}{\cancel{40}}^{8\cdot 5}}2 +125\frac {41\cdot \color{red}{\cancel{40}}^{8\cdot 5}\cdot 39}{6}\equiv$
$-1+(\color{blue}{205}) -125\cdot\frac {41\cdot 8}2 + 625\frac {41\cdot 8\cdot 39}6\equiv$
$-1 + (\color{blue}{125 + 80)} - 125\cdot 164 \equiv $
$-1+80 -125\cdot 163 \equiv$
$79 - 125(165 - 2)\equiv $
$79 -625\frac {165}5 + 250\equiv $
$79+250 \equiv 329\pmod {650}$
.....
That.... probably wasn't the easiest way.
\equiv
makes the $\equiv$ – Randall Oct 21 '20 at 17:17