I assume the following approach is different from your approach since it's fairly straightforward.
Unfortunately it does not avoid having to evaluate alternating series involving the hyperbolic sine.
Taking the first integral as an example, we can expand $$s(x)= x^{2}, \ -\frac{\pi}{2} \le x \le \frac{\pi}{2} ,$$ in a Fourier series, replace $\left(\arcsin(\sin x)\right)^{2} $ with this series, switch the order of summation and integration, and then integrate.
Let's first find the coefficients for the Fourier series of $s(x)$.
By definition, $$a_{0} = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} x^{2} \, \mathrm dx = \frac{\pi^{2}}{6},$$
$$a_{n}= \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} x^{2} \cos(2nx) \, \mathrm dx = \frac{2}{\pi} \frac{\pi}{2n^{2}} \, \cos(\pi n)= \frac{(-1)^{n}}{n^{2}}, $$
and $$b_{n}= \frac{2}{\pi}\int_{-\pi/2}^{\pi/2} x^{2} \sin(2nx) \, \mathrm dx = 0.$$
Therefore, $$s(x) = \frac{\pi^{2}}{12} + \sum_{n=1}^{\infty} \frac{(-1)^{n}\cos(2nx)}{n^{2}}.$$
Replacing $\left(\arcsin(\sin x) \right)^{2} $ with this Fourier series and then changing the order of summation and integration, we get $$\int_{0}^{\infty} \frac{\left(\arcsin(\sin x) \right)^{2}}{\cosh^{2}(x)} \, \mathrm dx = \left(\frac{\pi^{2}}{12} \int_{0}^{\infty} \frac{\mathrm dx}{\cosh^{2}(x)} + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \int_{0}^{\infty} \frac{\cos(2nx)}{\cosh^{2}(x)} \, \mathrm dx\right) . $$
The first integral is simple to evaluate since $\tanh(x)$ is an antiderivative of $\operatorname{sech}^{2}(x)$.
To evaluate the second integral, we can integrate the function $$f(z) = \frac{e^{2inx}}{\cosh^{2}(x)}$$ around a rectangular contour in the upper half of the complex plane of height $i \pi$.
We get $$\int_{-\infty}^{\infty} \frac{e^{2inx}}{\cosh^{2}(x)} \, \mathrm dx - e^{-2 n \pi}\int_{-\infty}^{\infty} \frac{e^{2inx}}{\cosh^{2}(x)} \, \mathrm dx = 2 \pi i \operatorname{Res} \left[f(z), \frac{i \pi}{2}\right] = 2 \pi i \left(2in e^{- \pi n} \right).$$
Then equating the real parts on both sides of the equation, we get $$\int_{-\infty}^{\infty}\frac{\cos(2nx)}{\cosh^{2}(x)} \, \mathrm dx = 2 \pi n \, \frac{2e^{- \pi n}}{1-e^{-2 \pi n}} = 2 \pi n \, \frac{2}{e^{\pi n}-e^{- \pi n}} = \frac{2 \pi n}{\sinh (\pi n)}. $$
Therefore, $$ \int_{0}^{\infty} \frac{\left(\arcsin(\sin x) \right)^{2}}{\cosh^{2}(x)} \, \mathrm dx = \frac{\pi^{2}}{12} + \pi \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sinh(\pi n)}.$$
I asked about that particular series (and related series) here.