How to evaluate the value of $$\sum_{n=0}^\infty \frac{\sin ((2n+1)\theta)}{(2n+1)}$$
My try:: I tried similar manipulating Proving a trig infinite sum using integration , but I am getting constant. $$\log ( 1 + e^{i \theta}) - \log (1 - e^{i \theta}) = 2 \sum_{n=1}^{\infty} \frac{e^{i (2n+1)}}{2n+1}$$ Comparing imaginary parts on both sides, I am getting $\displaystyle \sum_{n=0}^\infty \frac{\sin ((2n+1)\theta)}{(2n+1)} = \frac{\pi}{4}$?