Let $A \in \mathbb{R}^{n \times n}$ such that for all $x \in \mathbb{R}^n, x^TAx \geq 0$. Prove that $\ker(A) = \ker(A^T)$.
My idea: if we can prove $A$ is symmetric, then we can solve it?
Let $A \in \mathbb{R}^{n \times n}$ such that for all $x \in \mathbb{R}^n, x^TAx \geq 0$. Prove that $\ker(A) = \ker(A^T)$.
My idea: if we can prove $A$ is symmetric, then we can solve it?
Let $x \in \ker A$ or $x \in \ker A^T$. Then we have
$$x^T\frac{A + A^T}{2}x = x^T A x = 0 \tag 1$$
(See here for the first equality.)
This implies
$$\frac{A + A^T}{2}x = 0 \tag 2$$
so that
$$(A + A^T)x = 0 \tag 3$$
where $(2)$ follows since $\frac{A + A^T}{2}$ is symmetric positive semidefinite (see here).
Thus if $x \in \ker A$ $(3)$ gives $A^Tx = 0$ and vice versa so that $\ker A = \ker A^T$.
$\square$