Suppose $a_n\geq 0$ for all $n$ and $$\lim_{n\to \infty }\frac{a_{n+1}}{a_n}=\rho.$$
How can I show that $\lim_{n\to \infty }\sqrt[n]{a_n}=\rho$ ?
Atempts $$|\sqrt[n]{a_n}-\rho|=\frac{|a_n-\rho|}{a_n^{n-1}+\rho a_n^{n-2}+...+\rho^{n-1}},$$ but I'm not so sure why the RHS goes to 0 when $n\to \infty $.