One-sided containment is clear i.e. $Q(\sqrt{p}, \sqrt{q}) \supseteq Q(\sqrt{p} + \sqrt{q})$. To show other side I tried in this manner, suppose $p > q$ then $\sqrt{p} + \sqrt{q} \in Q(\sqrt{p} + \sqrt{q})$ implies $({\sqrt{p} + \sqrt{q}})^{-1} = \frac{\sqrt{p} - \sqrt{q}}{p-q} \in Q(\sqrt{p} + \sqrt{q})$ implies $\sqrt{p} - \sqrt{q} \in Q(\sqrt{p} + \sqrt{q})$. Hence $\sqrt{p} = \frac{1}{2}((\sqrt{p} + \sqrt{q})+(\sqrt{p} -\sqrt{q})) \in Q(\sqrt{p} + \sqrt{q})$. Similiarly $\sqrt{q} \in Q(\sqrt{p} + \sqrt{q})$. From here we get $Q(\sqrt{p}, \sqrt{q}) \subseteq Q(\sqrt{p} + \sqrt{q})$.
I am not sure that it is correct or not, please tell me if any problem with my proof.