To prove: $1 + a + a^2 ... + a^{n-1} = \frac{1-a^n}{1-a}$, for $n \in \mathbb{N}$.
Let $P(n)$ denote $1 + a + a^2 ... + a^{n-1} = \frac{1-a^n}{1-a}$ for $n \in \mathbb{N}$. We shall use weak induction, i.e. show $P(1)$ is true, assume for $P(k)$, show for $P(k+1)$.
The base case, i.e. $P(1)$ is easy to see, since the LHS $= 1$ and RHS $= \frac{1-a}{1-a} = 1$.
Now, assume $P(k)$ to be true for some $n \in \mathbb{N}$. Let us show that $P(k+1)$ is true.
$$1 + a + a^2 ... + a^{k-1} + a^k = \frac{1-a^k}{1-a} + a^k = \frac{1-a^{k+1}}{1-a}$$ which shows that $P(k+1)$ is true, and completes the proof. Note that the first equality follows from the fact that $P(k)$ is true (assumed right before).