-1

Given $k \leq n$ positive integers, how to simplify ${ n \choose k } + { n-1 \choose k-1 } + \dots + { n-k \choose 0 }$?

Aladin
  • 702

2 Answers2

1

$$\binom{n+1}{k}-\binom{n}{k}=\binom{n}{k-1}$$ $$\binom{n}{k-1}-\binom{n-1}{k-1}=\binom{n-1}{k-2}$$ $$\binom{n-1}{k-2}-\binom{n-2}{k-2}=\binom{n-2}{k-3}$$ $$\vdots$$ $$\binom{n-k+2}{1}-\binom{n-k+1}{1}=\binom{n-k+1}{0}$$ $$\binom{n-k+1}{0}-\binom{n-k}{0}=1-1=0$$

Summing we get $$\binom{n+1}{k}-\left(\binom{n}{k}+\binom{n-1}{k-1}+\binom{n-2}{k-2}+\cdots+\binom{n-k}{0}\right)=0$$

Hence simpler form for your expression is $\binom{n+1}{k}$.

QED
  • 12,644
1

Applying symmetry twice and the hockey-stick identity, we have $$\sum_{j=0}^k \binom{n-k+j}{j} = \sum_{j=0}^k \binom{n-k+j}{n-k} = \binom{n+1}{n-k+1} = \binom{n+1}{k}$$

RobPratt
  • 45,619