I saw this problem on a math board / insta:
$$\lim_{x\rightarrow3}\frac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}$$
My first step would be take a derivative of the numerator and denominator to see if the limit exists or not, since just plugging in gets me 0/0 which is undefined.
$$\frac{d}{dx}(\sqrt{3x}-3)=\frac{d}{dx}((3x)^{\frac{1}{2}}-3)=\frac{3}{2}(3x)^{-1/2} $$
and
$$\frac{d}{dx}(\sqrt{2x-4}-\sqrt{2})=\frac{d}{dx}((2x-4)^{\frac{1}{2}}-\sqrt{2})=\frac{1}{2}(2x-4)^{-1/2}(2)=(2x-4)^{-1/2} $$
Which means at $x=3$ I get $\frac{3}{2}(9)^{1/2}= \frac{9}{2}$ in the numerator and $\sqrt{2}$ in the denominator to get me $$\lim_{x\rightarrow3}\frac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}=\frac{9}{2\sqrt{2}}$$
So I am curious if I did this correctly, or if I am totally misusing L'Hôpital's rule.
ETA: thanks for noting the exponent error. So $\frac{3}{2}(3x)^{-1/2}$ at $x=3$ should be $\frac{3}{2\sqrt{3(3)}}=\frac{1}{2}$ and $(2x-4)^{-1/2}$ at $x=3$ is $\frac{1}{\sqrt{2}}$
for $\frac{\sqrt{2}}{2}$