-1

$$\lim_{x \to \infty}\:\: \frac{1+2+3+...x}{x^2} $$ How can I find the limit of above expression. Please tell me which identities and theorems to apply.

Sebastiano
  • 7,649
gauss19
  • 7
  • 2

1 Answers1

0

You can observe the sum of the first $n$ numbers corresponds to

$\sum_{k=1}^n k=\frac{n(n+1)}{2}$

This means

$\lim_{n\to \infty} \frac{n(n+1)}{2n^2}=\frac{1}{2}$

Federico Fallucca
  • 8,593
  • 1
  • 9
  • 20