You do not need a factorisation. Let $\epsilon>0$. For $|x-7|<\delta\le 1$, we have $|x|<8$, so $$|x^3-7^3| =|x-7||x^2+7x+7^2|\le|x-7|\underbrace{(8^2 + 7\times 8 + 49)}_{=:C_1}\le C_1 \delta,\\
|-9x^2 + 9\times 7^2| = 9|x+7||x-7| \le \underbrace{9 \times (8+7)}_{=:C_2} |x-7| \le C_2 \delta, $$
so if
$|x-7|\le \delta:=\frac{\min(\epsilon,1)}{C_1 + C_2 + 1}\le 1$, then as $-90 = 7^3 -9\times 7^2 -7 + 15, $
\begin{align} |x^3 - 9x^2 -x+15 - (-90)| &\le |x^3-7^3| + |-9x+9\times 7^2| + |-x+7| \\
&\le \frac{C_1\min(\epsilon,1)}{C_1+C_2+1} + \frac{C_2\min(\epsilon,1)}{C_1+C_2+1} + \frac{\min(\epsilon,1)}{C_1+C_2+1}
\\
&=\min(\epsilon,1)\\ &\le \epsilon.
\end{align}
This is easier to replicate when factorisation is hard e.g. the degree of the polynomial is large, or you're checking the limit at 'unusual' points. (This is just product rule and sum rule repeatedly applied.)