I have problems solving the following equation:
$$(n-1)! \equiv \text{ ?} \pmod n$$
I already know it cannot be $-1$ (by Wilson's theorem).
I've tried checking what the solutions can be for small values of $n$:
$n=2: \ \ \ \ (n-1)! = 1 \equiv \ \ 2k+1 \ \ \ \ \bmod 2, \ \ k \in \mathbb{N}$ $n=3: \ \ \ \ (n-1)! = 2 \equiv \ \ 3k+2 \ \ \ \bmod 3, \ \ k \in \mathbb{N}$ $n=4: \ \ \ \ (n-1)! = 6 \equiv \ \ 4k+2 \ \ \ \ \bmod 4, \ \ k \in \mathbb{N}$ $n=5: \ \ \ \ (n-1)! = 24 \equiv \ \ 5k+4 \ \bmod 5, \ \ k \in \mathbb{N}$ $n=6: \ \ \ \ (n-1)! = 120 \equiv \ \ 0 \ \ \ \ \ \ \ \ \bmod 6, \ \ k \in \mathbb{N}$ $n=7: \ \ \ \ (n-1)! = 720 \equiv \ \ 7k+6 \ \bmod 7, \ \ k \in \mathbb{N}$
but I can't see any relationship here. Could you help me here?
Thank you.