Given a probability space $(\Omega,\mathcal{A},\mathbb{P})$. Let $\{B_t:t\ge0\}$ be a standard Brownian Motion. We know that: $$\{\limsup B_n/\sqrt{n}\ge c\}\supseteq \{B_n/\sqrt{n}> c\text{ i.o.}\}$$
Could it be shown that: $$\mathbb{P}(\{B_n/\sqrt{n}> c\text{ i.o.}\})\ge \mathbb{P}(\{B_1>c\})$$? If so, how? Any hint?