How to prove the equality of the two defintions of $e$?
$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\sum_{n=0}\frac{1}{n!}$$
There are answers in other questions like this:
$$\begin{aligned} \lim_{n\to \infty}\left(1+\frac{1}{n}\right)^n &= \lim_{n\to\infty}\sum_{k=0}^n \frac{1}{k!} \prod_{m=0}^{k-1}\left(1-\frac{m}{n}\right)\\ &=^?\sum_{k=0}^\infty\left[\frac{1}{k!}\lim_{n\to\infty}\prod_{m=0}^{k-1}\left(1-\frac{m}{n}\right)\right]\\ &=\sum_{k=0}^\infty\frac{1}{k!} \end{aligned}$$
However, I think this operation of limits is wrong. For example, $\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\frac{1}{n}=1$ and $\sum\limits_{k=1}^\infty\lim\limits_{n\to\infty}\frac{1}{n}=0$.