For $X_n>0$ almost surely, show that if $X_n\overset{p}{\rightarrow}X$ and $\mathbb E(X_n)\rightarrow\mathbb E(X)$, then $\mathbb E|X_n−X|\rightarrow0$
My try:
My idea was to consider the positive and negative parts of $|X_n−X|$ separately. We have
$$\begin{align*} \mathbb E|X_n-X| &=\mathbb E\left(\left(X_n-X\right)^{+}\right) + \mathbb E\left(\left(X_n-X\right)^{-}\right)\\\\ &=\mathbb E\left(\max\{X_n-X,0\}\right)+\mathbb E\left(\max\{X-X_n,0\}\right) \end{align*}$$
Since $\mathbb E(X_n)\rightarrow\mathbb E(X)$ then $\mathbb E(X_n-X)\rightarrow0$ and $\mathbb E(X-X_n)\rightarrow0$. Hence it seems it should be the case that $\mathbb E\left(\max\{X_n-X,0\}\right)$ converges to $0$ (and similarly for $\mathbb E\left(\max\{X-X_n,0\}\right)$). Hence $\mathbb E|X_n-X|\rightarrow0$.
Is my reasoning correct? I never made use of the fact that $X_n>0$ almost surely, nor the fact that $X_n\overset{p}{\rightarrow}X$ so I feel my approach might not be right.