Definition. Let $\lambda^*$ denote the Lebesgue outer measure on $\mathbb {R}$. A set $E \in P(\mathbb{R})$ satisfies the Carathéodory condition if: $$ \forall T \in P(\mathbb{R}), \space\space\lambda^*(T) = \lambda^*(T \cap E) + \lambda^*(T \cap E^c)$$
I can not find a set $E$ such that: $$ \textrm{ for some } T \in P(\mathbb{R}), \space\space\lambda^*(T) < \lambda^*(T \cap E) + \lambda^*(T \cap E^c)$$
May you help me?
Thanks!