Assuming one has to explain matrix multiplication to someone who has not seen much of linear algebra, a matrix is introduced as a collection of vectors. For example, for two $3\times3$ matrices $A$ and $B$,
$$
A=\begin{bmatrix} \quad r_{A1} \quad \\ \quad r_{A2} \quad \\ \quad r_{A3} \quad \end{bmatrix} = \Biggl[ \begin{matrix} c_{A1} \quad & \quad c_{A2} \quad & \quad c_{A3} \end{matrix} \Biggr]
$$
where $r_{Ai}$, $c_{Aj}$ are called row and column vectors respectively.
Similarly, $$
B=\begin{bmatrix} \quad r_{B1} \quad \\ \quad r_{B2} \quad \\ \quad r_{B3} \quad \end{bmatrix} = \Biggl[ \begin{matrix} c_{B1} \quad & \quad c_{B2} \quad & \quad c_{B3} \end{matrix} \Biggr]
$$
By rules of matrix multiplication,
$$
AB=\begin{bmatrix} r_{A1}\cdot c_{B1} & r_{A1}\cdot c_{B2} & r_{A1}\cdot c_{B3} \\ r_{A2}\cdot c_{B1} & r_{A2}\cdot c_{B2} & r_{A2}\cdot c_{B3} \\ r_{A3}\cdot c_{B1} & r_{A3}\cdot c_{B2} & r_{A3}\cdot c_{B3} \end{bmatrix}
$$
where $r_{A1}\cdot c_{B1}$ stands for dot product of vectors $r_{A1}$ and $c_{B1}$.
Similarly,
$$
BA=\begin{bmatrix} r_{B1}\cdot c_{A1} & r_{B1}\cdot c_{A2} & r_{B1}\cdot c_{A3} \\ r_{B2}\cdot c_{A1} & r_{B2}\cdot c_{A2} & r_{B2}\cdot c_{A3} \\ r_{B3}\cdot c_{A1} & r_{B3}\cdot c_{A2} & r_{B3}\cdot c_{A3} \end{bmatrix}
$$
Clearly, the two results are different.