I think that this is way too complicated for this problem.
So here is a hint:
$$\sum_{k=0}^{3n}\binom{3n}{k}=2^{3n}=8^n$$
Moreover, observer that $$\sum_{k=0}^{3n}\binom{3n}{k}=\sum_{k=0,k\equiv 0\pmod{3}}^{3n}\binom{3n}{k}+\sum_{k=0,k\equiv 1\pmod{3}}^{3n}\binom{3n}{k}+\sum_{k=0,k \equiv 2\pmod{3}}^{3n}\binom{3n}{k}$$
And another very useful thing is that $$\sum_{k=0,k\equiv 1\pmod{3}}^{3n}\binom{3n}{k}=\sum_{k=0,k \equiv 2\pmod{3}}^{3n}\binom{3n}{k}$$
So you have $$8^n=\sum_{k=0,k\equiv 0\pmod{3}}^{3n}\binom{3n}{k}+2\sum_{k=0,k\equiv 1\pmod{3}}^{3n}\binom{3n}{k}$$
Thus, if you prove that $$\sum_{k=0,k\equiv 1\pmod{3}}^{3n}\binom{3n}{k}=\sum_{k=0,k\equiv 0\pmod{3}}^{3n}\binom{3n}{k}+(-1)^n$$
You can substitute in $$8^n=\sum_{k=0,k\equiv 0\pmod{3}}^{3n}\binom{3n}{k}+2\sum_{k=0,k\equiv 1\pmod{3}}^{3n}\binom{3n}{k}$$
And you get what you want. Now lets prove
$$\sum_{k=0,k\equiv 1\pmod{3}}^{3n}\binom{3n}{k}=\sum_{k=0,k\equiv 0\pmod{3}}^{3n}\binom{3n}{k}+(-1)^n$$
I hope this helped you. Try to prove this yourself, you can reach out in the comments section.