$$\sum_{k=0}^l \binom{n}{k}\binom{m}{l-k} = \binom{n+m}{l} $$
There was a hint saying apply binomial theorem to $(1+x)^n(1+x)^m$
From which I've got $(1+x)^n(1+x)^m=(1+x)^{m+n}$
$(1+x)^n(1+x)^m=\sum^n_{k=0}\binom{n}{k}x^k\cdot\sum^m_{j=0}\binom{m}{j}x^j$
$(1+x)^{m+n}=\sum^{m+n}_{l=0}\binom{m+n}{l}x^l$
$\sum^n_{k=0}\binom{n}{k}x^k\cdot\sum^m_{j=0}\binom{m}{j}x^j = \sum^{m+n}_{l=0}\binom{m+n}{l}x^l$
In (3) every power $l$ of $x$ on the RHS equals $k+j$ for some $k$ and $j$ from the LHS. Here I'm stuck. How to complete the proof?