Using positive integers only for $x,y,z$ there are no solutions for $k<3$ but here are $3\le k \le 100$. The use of non-positive integers follows.
(x,y,z,k)
(1,1,1,3)
(1,1,2,10)
(1,2,2,17)
(2,2,2,24)
(1,1,3,29)
(1,2,3,36)
(2,2,3,43)
(1,3,3,55)
(2,3,3,62)
(1,1,4,66)
(1,2,4,73)
(2,2,4,80)
(3,3,3,81)
(1,3,4,92)
(2,3,4,99)
It appears that at least one of x,y,z must be positive if k is positive.
(x,y,z,k)
(-100,1,100,1)
(-99,1,99,1)
(-98,1,98,1)
(-97,1,97,1)
(-96,1,96,1)
(-95,1,95,1)
(-94,1,94,1)
(-93,1,93,1)
(-92,1,92,1)
(-91,1,91,1)
(-90,1,90,1)
(-89,1,89,1)
(-88,1,88,1)
(-87,1,87,1)
(-86,1,86,1)
(-85,1,85,1)
(-84,1,84,1)
(-83,1,83,1)
(-82,1,82,1)
(-81,1,81,1)
(-80,1,80,1)
(-79,1,79,1)
(-78,1,78,1)
(-77,1,77,1)
(-76,1,76,1)
(-75,1,75,1)
(-74,1,74,1)
(-73,1,73,1)
(-72,1,72,1)
(-71,1,71,1)
(-70,1,70,1)
(-69,1,69,1)
(-68,1,68,1)
(-67,1,67,1)
(-66,1,66,1)
(-65,1,65,1)
(-64,1,64,1)
(-63,1,63,1)
(-62,1,62,1)
(-61,1,61,1)
(-60,1,60,1)
(-59,1,59,1)
(-58,1,58,1)
(-57,1,57,1)
(-56,1,56,1)
(-55,1,55,1)
(-54,1,54,1)
(-53,1,53,1)
(-52,1,52,1)
(-51,1,51,1)
(-50,1,50,1)
(-49,1,49,1)
(-48,1,48,1)
(-47,1,47,1)
(-46,1,46,1)
(-45,1,45,1)
(-44,1,44,1)
(-43,1,43,1)
(-42,1,42,1)
(-41,1,41,1)
(-40,1,40,1)
(-39,1,39,1)
(-38,1,38,1)
(-37,1,37,1)
(-36,1,36,1)
(-35,1,35,1)
(-34,1,34,1)
(-33,1,33,1)
(-32,1,32,1)
(-31,1,31,1)
(-30,1,30,1)
(-29,1,29,1)
(-28,1,28,1)
(-27,1,27,1)
(-26,1,26,1)
(-25,1,25,1)
(-24,1,24,1)
(-23,1,23,1)
(-22,1,22,1)
(-21,1,21,1)
(-20,1,20,1)
(-19,1,19,1)
(-18,1,18,1)
(-17,1,17,1)
(-16,1,16,1)
(-15,1,15,1)
(-14,1,14,1)
(-13,1,13,1)
(-12,1,12,1)
(-12,9,10,1)
(-11,1,11,1)
(-10,1,10,1)
(-9,1,9,1)
(-8,-6,9,1)
(-8,1,8,1)
(-7,1,7,1)
(-6,1,6,1)
(-5,1,5,1)
(-4,1,4,1)
(-3,1,3,1)
(-2,1,2,1)
(-1,1,1,1)
(0,0,1,1)
(-47,-24,49,2)
(-6,-5,7,2)
(0,1,1,2)
(-5,4,4,3)
(1,1,1,3)
(-58,-43,65,6)
(-1,-1,2,6)
(-1,0,2,7)
(-100,2,100,8)
(-99,2,99,8)
(-98,2,98,8)
(-97,2,97,8)
(-96,2,96,8)
(-95,2,95,8)
(-94,2,94,8)
(-93,2,93,8)
(-92,2,92,8)
(-91,2,91,8)
(-90,2,90,8)
(-89,2,89,8)
(-89,41,86,8)
(-88,2,88,8)
(-87,2,87,8)
(-86,2,86,8)
(-85,2,85,8)
(-84,2,84,8)
(-83,2,83,8)
(-82,2,82,8)
(-81,2,81,8)
(-80,2,80,8)
(-79,2,79,8)
(-78,2,78,8)
(-77,2,77,8)
(-76,2,76,8)
(-75,2,75,8)
(-74,2,74,8)
(-73,2,73,8)
(-72,2,72,8)
(-71,2,71,8)
(-70,2,70,8)
(-69,2,69,8)
(-68,2,68,8)
(-67,2,67,8)
(-66,2,66,8)
(-65,2,65,8)
(-64,2,64,8)
(-63,2,63,8)
(-62,2,62,8)
(-61,2,61,8)
(-60,2,60,8)
(-59,2,59,8)
(-58,2,58,8)
(-57,2,57,8)
(-56,2,56,8)
(-55,2,55,8)
(-54,2,54,8)
(-53,2,53,8)
(-52,2,52,8)
(-51,2,51,8)
(-50,2,50,8)
(-49,2,49,8)
(-48,2,48,8)
(-47,2,47,8)
(-46,2,46,8)
(-45,2,45,8)
(-44,2,44,8)
(-43,2,43,8)
(-42,2,42,8)
(-41,2,41,8)
(-40,-17,41,8)
(-40,2,40,8)
(-39,2,39,8)
(-38,2,38,8)
(-37,2,37,8)
(-36,2,36,8)
(-35,2,35,8)
(-34,2,34,8)
(-34,15,33,8)
(-33,2,33,8)
(-32,2,32,8)
(-31,2,31,8)
(-30,2,30,8)
(-29,2,29,8)
(-28,2,28,8)
(-27,2,27,8)
(-26,2,26,8)
(-25,2,25,8)
(-24,2,24,8)
(-24,18,20,8)
(-23,2,23,8)
(-22,2,22,8)
(-21,2,21,8)
(-20,2,20,8)
(-19,2,19,8)
(-18,2,18,8)
(-17,2,17,8)
(-16,-12,18,8)
(-16,2,16,8)
(-16,9,15,8)
(-15,2,15,8)
(-14,2,14,8)
(-13,2,13,8)
(-12,2,12,8)
(-11,2,11,8)
(-10,2,10,8)
(-9,2,9,8)
(-8,2,8,8)
(-7,2,7,8)
(-6,2,6,8)
(-5,2,5,8)
(-4,2,4,8)
(-3,2,3,8)
(-2,2,2,8)
(-1,1,2,8)
(0,0,2,8)
(0,1,2,9)
(-3,-3,4,10)
(1,1,2,10)
(-2,-2,3,11)
(-11,7,10,12)
(-46,23,44,15)
(-1,2,2,15)
(-94,-48,98,16)
(-12,-10,14,16)
(0,2,2,16)
(-52,25,50,17)
(1,2,2,17)
(-2,-1,3,18)
(-95,47,91,19)
(-77,26,76,19)
(-16,-14,19,19)
(-2,0,3,19)
(-56,21,55,20)
(-2,1,3,20)
(-86,28,85,21)
(-14,-11,16,21)
(-10,8,8,24)
(2,2,2,24)
(-1,-1,3,25)
(-1,0,3,26)
(-100,3,100,27)
(-99,3,99,27)
(-98,3,98,27)
(-97,3,97,27)
(-96,3,96,27)
(-95,3,95,27)
(-94,3,94,27)
(-93,3,93,27)
(-92,3,92,27)
(-91,3,91,27)
(-90,3,90,27)
(-89,3,89,27)
(-88,3,88,27)
(-87,3,87,27)
(-86,3,86,27)
(-85,3,85,27)
(-84,3,84,27)
(-83,3,83,27)
(-82,3,82,27)
(-81,3,81,27)
(-80,3,80,27)
(-79,3,79,27)
(-78,3,78,27)
(-77,3,77,27)
(-76,3,76,27)
(-75,3,75,27)
(-74,3,74,27)
(-73,3,73,27)
(-72,3,72,27)
(-71,3,71,27)
(-70,3,70,27)
(-69,3,69,27)
(-68,3,68,27)
(-67,3,67,27)
(-66,3,66,27)
(-65,3,65,27)
(-64,3,64,27)
(-63,3,63,27)
(-62,3,62,27)
(-61,3,61,27)
(-60,3,60,27)
(-60,22,59,27)
(-59,3,59,27)
(-58,3,58,27)
(-57,3,57,27)
(-56,3,56,27)
(-55,3,55,27)
(-54,3,54,27)
(-53,3,53,27)
(-52,3,52,27)
(-51,3,51,27)
(-50,3,50,27)
(-49,3,49,27)
(-48,3,48,27)
(-47,3,47,27)
(-46,3,46,27)
(-45,3,45,27)
(-44,3,44,27)
(-43,3,43,27)
(-42,3,42,27)
(-41,3,41,27)
(-40,3,40,27)
(-39,3,39,27)
(-38,3,38,27)
(-37,-36,46,27)
(-37,3,37,27)
(-36,3,36,27)
(-36,27,30,27)
(-35,3,35,27)
(-34,3,34,27)
(-33,3,33,27)
(-32,3,32,27)
(-31,3,31,27)
(-30,3,30,27)
(-29,3,29,27)
(-28,3,28,27)
(-27,3,27,27)
(-26,3,26,27)
(-25,3,25,27)
(-24,-18,27,27)
(-24,3,24,27)
(-23,3,23,27)
(-22,3,22,27)
(-21,3,21,27)
(-20,3,20,27)
(-19,3,19,27)
(-18,-10,19,27)
(-18,3,18,27)
(-17,3,17,27)
(-16,3,16,27)
(-15,3,15,27)
(-14,3,14,27)
(-13,3,13,27)
(-12,3,12,27)
(-11,3,11,27)
(-10,3,10,27)
(-9,3,9,27)
(-8,3,8,27)
(-7,3,7,27)
(-6,3,6,27)
(-5,-4,6,27)
(-5,3,5,27)
(-4,3,4,27)
(-3,3,3,27)
(-2,2,3,27)
(-1,1,3,27)
(0,0,3,27)
(-59,31,56,28)
(-17,13,14,28)
(0,1,3,28)
(-20,13,18,29)
(-3,-2,4,29)
(1,1,3,29)
(-6,5,5,34)
(-4,-3,5,34)
(-1,2,3,34)
(-13,-8,14,35)
(0,2,3,35)
(-75,40,71,36)
(-3,-1,4,36)
(1,2,3,36)
(-56,37,50,37)
(-3,0,4,37)
(-27,16,25,38)
(-3,1,4,38)
(-52,20,51,43)
(-13,8,12,43)
(-7,-7,9,43)
(2,2,3,43)
(-7,-5,8,44)
(-3,2,4,45)
(-29,19,26,46)
(-2,3,3,46)
(-50,-50,63,47)
(-30,-14,31,47)
(-8,6,7,47)
(-26,-23,31,48)
(-2,-2,4,48)
(-4,-2,5,53)
(-1,3,3,53)
(-18,-15,21,54)
(-11,-7,12,54)
(0,3,3,54)
(-23,-23,29,55)
(-9,-6,10,55)
(-2,-1,4,55)
(1,3,3,55)
(-47,31,42,56)
(-21,-11,22,56)
(-2,0,4,56)
(-38,25,34,57)
(-2,1,4,57)
(-4,-1,5,60)
(-4,0,5,61)
(-43,22,41,62)
(-34,27,27,62)
(-4,1,5,62)
(-1,-1,4,62)
(2,3,3,62)
(-63,-37,67,63)
(-58,-38,63,63)
(-6,-4,7,63)
(-1,0,4,63)
(-100,4,100,64)
(-99,4,99,64)
(-98,4,98,64)
(-97,4,97,64)
(-96,4,96,64)
(-95,4,95,64)
(-94,4,94,64)
(-93,4,93,64)
(-92,4,92,64)
(-91,4,91,64)
(-90,4,90,64)
(-89,4,89,64)
(-88,4,88,64)
(-87,4,87,64)
(-86,4,86,64)
(-85,4,85,64)
(-84,4,84,64)
(-83,4,83,64)
(-82,4,82,64)
(-81,4,81,64)
(-80,-34,82,64)
(-80,4,80,64)
(-79,4,79,64)
(-78,4,78,64)
(-77,4,77,64)
(-76,4,76,64)
(-75,4,75,64)
(-74,4,74,64)
(-73,4,73,64)
(-72,4,72,64)
(-71,4,71,64)
(-70,4,70,64)
(-69,4,69,64)
(-68,4,68,64)
(-68,30,66,64)
(-67,4,67,64)
(-66,4,66,64)
(-65,4,65,64)
(-64,4,64,64)
(-63,4,63,64)
(-62,4,62,64)
(-61,4,61,64)
(-60,4,60,64)
(-59,4,59,64)
(-58,4,58,64)
(-57,4,57,64)
(-56,4,56,64)
(-55,4,55,64)
(-54,4,54,64)
(-53,4,53,64)
(-52,4,52,64)
(-51,4,51,64)
(-50,4,50,64)
(-49,4,49,64)
(-48,4,48,64)
(-48,36,40,64)
(-47,4,47,64)
(-46,4,46,64)
(-45,4,45,64)
(-44,4,44,64)
(-43,4,43,64)
(-42,4,42,64)
(-41,4,41,64)
(-40,4,40,64)
(-39,4,39,64)
(-38,4,38,64)
(-37,4,37,64)
(-36,4,36,64)
(-35,4,35,64)
(-34,4,34,64)
(-33,4,33,64)
(-32,-24,36,64)
(-32,4,32,64)
(-32,18,30,64)
(-31,4,31,64)
(-30,4,30,64)
(-29,4,29,64)
(-28,4,28,64)
(-27,4,27,64)
(-26,4,26,64)
(-25,4,25,64)
(-24,4,24,64)
(-23,4,23,64)
(-22,-17,25,64)
(-22,4,22,64)
(-21,4,21,64)
(-20,4,20,64)
(-19,4,19,64)
(-18,4,18,64)
(-17,4,17,64)
(-16,4,16,64)
(-15,4,15,64)
(-14,4,14,64)
(-13,4,13,64)
(-12,4,12,64)
(-11,4,11,64)
(-10,4,10,64)
(-9,4,9,64)
(-8,4,8,64)
(-7,4,7,64)
(-6,4,6,64)
(-5,-3,6,64)
(-5,4,5,64)
(-4,4,4,64)
(-3,3,4,64)
(-2,2,4,64)
(-1,1,4,64)
(0,0,4,64)
(0,1,4,65)
(1,1,4,66)
(-22,-19,26,69)
(-4,2,5,69)
(-64,23,63,70)
(-21,11,20,70)
(-33,-22,36,71)
(-24,12,23,71)
(-20,-16,23,71)
(-3,-3,5,71)
(-1,2,4,71)
(-27,-13,28,72)
(-10,7,9,72)
(0,2,4,72)
(-47,29,43,73)
(-24,-12,25,73)
(1,2,4,73)
(-55,26,53,78)
(-66,-49,74,79)
(-33,-19,35,79)
(-6,-6,8,80)
(2,2,4,80)
(-18,10,17,81)
(-15,12,12,81)
(3,3,3,81)
(-11,-11,14,82)
(-36,-32,43,83)
(-29,22,24,83)
(-23,-15,25,83)
(-5,-2,6,83)
(-2,3,4,83)
(-16,-9,17,88)
(-4,-4,6,88)
(-4,3,5,88)
(-7,6,6,89)
(-100,31,99,90)
(-73,-32,75,90)
(-51,-35,56,90)
(-48,19,47,90)
(-27,13,26,90)
(-9,-8,11,90)
(-5,-1,6,90)
(-3,-2,5,90)
(-1,3,4,90)
(-5,0,6,91)
(0,3,4,91)
(-8,-5,9,92)
(-5,1,6,92)
(1,3,4,92)
(-5,-5,7,93)
(-22,14,20,96)
(-22,17,18,97)
(-3,-1,5,97)
(-15,9,14,98)
(-3,0,5,98)
(-37,16,36,99)
(-5,2,6,99)
(-3,1,5,99)
(2,3,4,99)
(-6,-3,7,100)