Note: $\int := \int_{-\infty}^{\infty}$
Let $f \in L^1(\mathbb{R})$ so that
$\hat{f}(\xi) = \int f(x) \, e^{-ix\xi} \, dx$
is well-defined. Then
$$|\hat{f}(\xi)| = |\int f(x) \, e^{-ix\xi} \, dx| \leq \int |f(x)| \, dx < \infty$$
so $\hat{f} \in L^\infty(\mathbb{R})$,
but it's not certain that $\hat{f} \in L^1(\mathbb{R})$ so that $F(y) = \int \hat{f}(\xi) \, e^{iy\xi} \, d\xi$
is well-defined. Therefore, take $\alpha>0$ and multiply $\hat{f}(\xi)$ with $e^{-\alpha\xi^2}$ to get something in $L^1(\mathbb{R})$. We will later let $\alpha\to 0$. Now,
$$
\int e^{-\alpha\xi^2} \hat{f}(\xi) \, e^{iy\xi} \, d\xi
= \int e^{-\alpha\xi^2} \left( \int f(x) \, e^{-ix\xi} \, dx \right) \, e^{iy\xi} \, d\xi
= \int f(x) \, \left( \int e^{-\alpha\xi^2} e^{i(y-x)\xi} \, d\xi \right) \, dx
$$
by changing order of integration. Here,
$$
\int e^{-\alpha\xi^2} e^{i(y-x)\xi} \, d\xi
= \frac{2\pi}{\sqrt{4\pi\alpha}} e^{-(x-y)^2/(4\alpha)}
$$
so the integral becomes
$$
\int f(x) \, \frac{2\pi}{\sqrt{4\pi\alpha}} e^{-(x-y)^2/(4\alpha)} \, dx
= \{ x = y+z \}
= \int f(y+z) \, \frac{2\pi}{\sqrt{4\pi\alpha}} e^{-z^2/(4\alpha)} \, dz
= \{ u=z/\sqrt{4\alpha} \}
= \frac{2\pi}{\sqrt{4\pi\alpha}} \int f(y+\sqrt{4\alpha}u) \, e^{-u^2} \, \sqrt{4\alpha}\,du
= \frac{2\pi}{\sqrt{\pi}} \int f(y+\sqrt{4\alpha}u) \, e^{-u^2} \, du
$$
Thus,
$$
\int e^{-\alpha\xi^2} \hat{f}(\xi) \, e^{iy\xi} \, d\xi
= \frac{2\pi}{\sqrt{\pi}} \int f(y+\sqrt{4\alpha}u) \, e^{-u^2} \, du
$$
Letting $\alpha\to 0$ we get
$$
\lim_{\alpha\to 0} \int e^{-\alpha\xi^2} \hat{f}(\xi) \, e^{iy\xi} \, d\xi
= \lim_{\alpha\to 0} \frac{2\pi}{\sqrt{\pi}} \int f(y+\sqrt{4\alpha}u) \, e^{-u^2} \, du
= \frac{2\pi}{\sqrt{\pi}} \int f(y) \, e^{-u^2} \, du
= \frac{2\pi}{\sqrt{\pi}} \int e^{-u^2} \, du \, f(y)
= 2\pi\, f(y)
$$
If $\hat{f} \in L^1(\mathbb{R})$ this implies
$$
\int \hat{f}(\xi) \, e^{iy\xi} \, d\xi
= 2\pi\, f(y).
$$