As is well known, Stolz–Cesàro theorem is the following: Let $\displaystyle {(a_{n})_{n\geq 1}}$ and ${\displaystyle (b_{n})_{n\geq 1}}$be two sequences of real numbers. Assume that ${\displaystyle (b_{n})_{n\geq 1}}$ is a strictly monotone and divergent sequence (i.e. strictly increasing and approaching ${\displaystyle +\infty }$ , or strictly decreasing and approaching ${\displaystyle -\infty }$ and the following limit exists: $${\displaystyle \lim _{n\to \infty }{\frac {a_{n+1}-a_{n}}{b_{n+1}-b_{n}}}=l.\ }$$ Then, the limit
$${\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=l.\ }$$
I want to know that If we have $${\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=l.\ }$$ Can we deduce that $${\displaystyle \lim _{n\to \infty }{\frac {a_{n+1}-a_{n}}{b_{n+1}-b_{n}}}=l?\ }$$
If so, we can reslove the following exercise by the above result:
If $a_n\to a, b_n\geq 0, \forall n\in Z^+, \lim_{n\to \infty} b_1+b_2+\cdots+b_n=S,$ then $$\displaystyle \lim_{n\to \infty}a_1b_n+a_2b_{n-1}+\cdots+a_nb_{1}=aS.$$
Let $S_n= b_1+b_2+\cdots+b_n$ and $S_0=0$, then $S_n\to S,$ and $$a_1b_n+a_2b_{n-1}+\cdots+a_nb_{1}=\sum_{i=1}^{n}a_i(S_{n+1-i}-S_{n-i})$$
Hence,
$\lim_{n\to \infty}a_1b_n+a_2b_{n-1}+\cdots+a_nb_{1}$ $\displaystyle= \lim_{n\to \infty} \frac{\sum_{i=1}^{n}a_i(S_{n+1-i}-S_{n-i})}{n-(n-1)} $
$\displaystyle= \lim_{n\to \infty}\frac{\sum_{i=1}^{n}a_iS_{n+1-i}}{n}=aS.$
If not so, I would appreciate anyone who give the right solution and any suggestions.