I'm trying to prove\show the associative property for the $\gcd(a,b)$ function.
$$\gcd( a ,\space \gcd(b,c) ) = \gcd(\space \gcd(a,b) , c )$$
Let:
$$e = \gcd( a ,\space \gcd(b,c) )\text{ and }f = \gcd(\space \gcd(a,b) , c )$$
From here you can see that
$$ e\mid a,\gcd(b,c) \Longleftrightarrow e\mid a,b,c $$
And similarly,
\begin{align*} f|\gcd(a,b),c &\Longleftrightarrow f\mid a,b,c\\ &\Longleftrightarrow f\mid e\\ &\Longleftrightarrow e\mid f \end{align*}
If $ e\mid f$ and $f\mid e \Longrightarrow |e| = |f| $ and since $e$ and $f$ are both non-negative we have the result, $e = f$, as required.
Is this proof sound?
e|a,b,c and since f|a,b,c this implies e|f (and vice-versa in this case, f|e).
– kvmu May 07 '13 at 02:34