Given:$\DeclareMathOperator{\ord}{ord}$
$\phi(m)$ is Euler's totient function
$\ord(a)$ is the least solution of $a^t\equiv 1\pmod{m}$
$\operatorname{gcd}(x,y)=1$
$x=\ord(a)$
$y=\ord(b)$
Show $\ord(ab)\equiv xy \pmod{\phi(m)}$
Given:$\DeclareMathOperator{\ord}{ord}$
$\phi(m)$ is Euler's totient function
$\ord(a)$ is the least solution of $a^t\equiv 1\pmod{m}$
$\operatorname{gcd}(x,y)=1$
$x=\ord(a)$
$y=\ord(b)$
Show $\ord(ab)\equiv xy \pmod{\phi(m)}$
Lemma: If $a^r\equiv b^s\pmod{m}$
and $r,s<\phi$.
Then since $(a^r)^{ord(a)}\equiv 1 \pmod{m}$,
$ord(a^r)|x$
Similiary $ord(b^s)|y$.
Since $gcd(x,y)=1$, $ord(a^r)=1$ and
Then $a^r \equiv 1$
$a^{ord(ab)}\equiv b^{-ord(ab)}$
By the lemma, $a^{ord(ab)}\equiv 1\equiv b^{-ord(ab)}$
$x|ord(ab)$ and $y|ord(ab)$
Since $gcd(x,y)=1$, $xy=lcm(x,y)|ord(ab)$
But since $(ab)^{xy}\equiv 1$, $ord(ab)|xy$,
So we have $xy=ord(ab)$
This begs a question: can we have $xy>\phi$, requiring us to say that $xy\equiv ord(ab) \pmod{\phi}$ (as in the given problem) rather than saying that they are exactly equal? But $xy<=ord(ab)<=\phi$