Let $\{a_n\}$ be a sequence of real numbers such that $a_1=2$, $a_{n+1} = a_n^2 -a_n+1$, for $n=1,2,3..$. Let $S=\frac{1}{a_1}+\frac{1}{a_2} ....+\frac{1}{a_{2018}}$, then prove that
- $S>1-\frac{1}{2018^{2018}}$
- $S<1$
- $S>1-\frac{1}{2017^{2017}}$
$$a_{n+1}-1 = a_n^2-1-a_n+1$$ $$a_{n+1} -1 = (a_n-1)(a_n)$$ $$\frac{1}{a_{n+1}-1} =\frac{1}{a_n-1} -\frac{1}{a_n}$$
$$\frac{1}{a_n}=\frac{1}{a_n-1} -\frac{1}{a_{n+1}-1}$$
So $$S=1-\frac{1}{a_{2019}-1}$$
How do I proceed from here?