Prove that there exist infinitely many triples of positive integers $ x , y , z $ for which the numbers $ x(x+1) , y(y+1) , z(z+1) $ form an increasing arithmetic progression.
$ \bigg( $ It is equivalent to find all triples of $ 4x(x+1)+1=(2x+1)^{2} , 4y(y+1)+1=(2y+1)^{2} , 4z(z+1)+1=(2z+1)^{2} $ $ \bigg) $
Note : I know $ \big( 1^{2} , 5^{2} , 7^{2} \big) $ , $ \big( 7^{2} , 13^{2} , 17^{2} \big) $ , $ \big( 7^{2} , 17^{2} , 23^{2} \big) $ , $ \big( 17^{2} , 25^{2} , 31^{2} \big) $ , but how i can found all triples ?