Determine the image and area of the unit disk D = {($x$, $y$) | $x^2 + y^2 ≤ 1$ } under the linear transformation T: R$^2$ $\rightarrow$ R$^2$ defined by T([, ]) = $ \begin{bmatrix} 1 & -\frac{\sqrt{3}}{2} \\ \sqrt{3} & \frac{1}{2} \end{bmatrix}$$ \begin{bmatrix} x \\ y \end{bmatrix}$
So far I've taken the inverse of A = $ \begin{bmatrix} 1 & -\frac{\sqrt{3}}{2} \\ \sqrt{3} & \frac{1}{2} \end{bmatrix}$ and I've gotten $\frac{1}{2}$$ \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\sqrt{3} & 1 \end{bmatrix}$. Not sure how to proceed with the solution, however.