In $\Delta ABC$, $C = \frac{\pi}{3}$, how to prove that $\cos^2A + \cos^2B = \frac{1}{2} \cos(2A + \frac{\pi}{3}) + 1$?
My attempt: \begin{align} L.H.S &= \cos^2A + \cos^2B \\ &= \cos^2A + \cos^2(A + \frac{\pi}{3}) \\ &= \frac{1 + \cos 2A}{2} + \frac{1 + \cos(2A + \frac{2}{3}\pi)}{2} \\ &= 1 + \frac{1}{2} \cos 2A + \frac{1}{2}(\cos 2A \cos\frac{2\pi}{3} - \sin \frac{2\pi}{3}\sin 2A) \\ &= 1 + \frac{1}{4} \cos 2A - \frac{\sqrt 3}{4} \sin 2A \\ R.H.S &= \frac{1}{2}\cos (2A + \frac{\pi}{3}) + 1 \\ &= \frac{1}{2}(\cos 2A \cos\frac{\pi}{3} - \sin \frac{\pi}3 \sin 2A) + 1 \\ &= 1 + \frac{1}{4}\cos 2A - \frac{\sqrt{3}}{4} \sin 2A \\ &= L.H.S \end{align} I wonder if there is a way to show it more efficiently.