You're off to a good start; if $b+1$ and $3b+4$ are both perfect squares, then
$$3b+4=x^2\qquad\text{ and }\qquad b+1=y^2,$$
for some integers $x$ and $y$, and hence
$$x^2-3y^2=1.$$
This is a Pell equation, and its solutions are well known. I suggest to start from the Wikipedia page to understand how to find all integral solutions. In particular there are infinitely many solutions.
One characterization of the integral solutions is that they are precisely the pairs of integers $(x,y)$ for which
$$x+y\sqrt{3}=\pm(2+\sqrt{3})^k,$$
for some integer $k$. Of course the choice of $\pm$ sign only changes the signs of $x$ and $y$, and the same is true if we replace $k$ by $-k$. So to find all solutions $b$ it suffices to consider $(2+\sqrt{3})^k$ with $k\geq0$. The first few solutions are:
$$\begin{array}{r|rr|rr}
k&x&y&b&(374)_b\\
\hline
0&1&0&\color{red}{-1}&\color{red}{0^2}\\
1&2&1&\color{red}{0}&\color{red}{2^2}\\
2&7&4&15&28^2\\
3&26&15&224&390^2\\
4&97&56&3135&5432^2\\
5&362&209&43680&75658^2
\end{array}$$