Here is an approach. We first need a preliminary result.
Given a polynomial $P$ defiine $(\Delta P)(x)=P(x+1)-P(x)$ (the first difference operator). Given a polynomial $P$ where $P(x)= a_0 + a_1x + \cdots + a_nx^n$, we claim that
$$
\Delta^{n}(P)(x)=n!a_{n}\tag{0}\label0.
$$
To see this write
$$
P(x) = \sum_{k=0}^{n} a_k x^k= \sum_{k=0}^{n} a_k \sum_{m=0}^{k}S(k,m)x^{\underline{m}}\tag{1}\label1
$$
where $S(k,m)$ is the stirling number of the second kind. and $x^{\underline{m}}$ is the falling factorial. Since $\Delta(x^{\underline m})=mx^{\underline{m-1}}$, $\Delta^{n}(x^{\underline {m}})=m^{\underline n}x^{\underline{m-n}}$. If $m<n$, then $\Delta^{n}(x^{\underline {m}})=0$. Hence taking $\Delta ^{n}$ of both sides of (1) yields that
$$
(\Delta^nP)(x)=n!S(n,n)a_{n}=n!a_{n}\tag{2}\label2.
$$
Returning to the problem define $S(P)(x)=P(x+1)$ (shift operator), so $\Delta=S-I$ where $I(P)=P$ is the identity operator. Since $S$ and $I$ commute the binomial theorem implies that
$$
\Delta^n=(S-I)^n=\sum_{j=0}^n\binom{n}{j}(-1)^{n-j}S^j=(-1)^n\sum_{j=0}^n \binom{n}{j}(-1)^jS^j
$$
whence
$$
(\Delta^nP)(0)=(-1)^n\sum_{j=0}^n\binom{n}{j}(-1)^jP(j)\tag{3}.
$$
If $P$ is a polynomial of degree less than $n$, than $(\Delta^n)P=0$ by $(0)$, whence $(3)$ implies the result.