0

$\require{begingroup} \begingroup$ $\def\e{\mathrm{e}}\def\W{\operatorname{W}}\def\Wp{\operatorname{W_0}}\def\Wm{\operatorname{W_{-1}}}$

This question is closely related to the similar one about the arithmetic mean of $\Wp(x)$, $\Wm(x)$ for real $x<0$.

Obviously, the product of the two complex conjugate values $\Wp(x)$, $\Wm(x)$ for $x<-\tfrac1\e$ is real, and it appears that the geometric mean defined as

\begin{align} f_g(x)&=-\sqrt{\Wp(x)\Wm(x)} \tag{1}\label{1} \end{align}

enter image description here

The answer below answers to the question:

Is this geometric mean also $C^2$-smooth for $x<0$?

$\endgroup$

g.kov
  • 13,581

1 Answers1

0

$\require{begingroup} \begingroup$ $\def\e{\mathrm{e}}\def\W{\operatorname{W}}\def\Wp{\operatorname{W_0}}\def\Wm{\operatorname{W_{-1}}}\def\i{\mathbf{i}}$

Using the same parametrization as in the answer abut smoothness of the arithmetic mean, we have

\begin{align} \Wp(\alpha)&=-\tfrac\alpha2\,\cot\tfrac\alpha2-\tfrac\alpha2\cdot\i \tag{1} \end{align}

\begin{align} \Wm(\alpha) &=-\tfrac\alpha2\,\cot\tfrac\alpha2+\tfrac\alpha2\cdot\i \tag{2}\label{2} , \end{align}

\begin{align} x(\alpha)&= -\frac{\alpha}{2\sin\tfrac\alpha2} \cdot\exp(-\tfrac\alpha2\,\cot\tfrac\alpha2) \tag{3}\label{3} \end{align}

for $x\le-\tfrac1\e$, $\alpha\ge0$, since

\begin{align} \lim_{\alpha\to0}x(\alpha)=-\tfrac1\e \tag{4}\label{4} . \end{align}

Combining this with the parametric representation of $\Wp(x),\,\Wm(x)$ we have \begin{align} \Wp(a)&=\frac{a\ln a}{1-a} \tag{5}\label{5} ,\\ \Wm(a)&=\frac{\ln a}{1-a} \tag{6}\label{6} ,\\ x(a)&=\frac{\ln a}{1-a}\cdot a^{\tfrac1{1-a}} \tag{7}\label{7} \end{align}
for $x\in[-\tfrac1\e,0]$, $a\in[0,1]$.

The geometric mean of interest, defined as

\begin{align} f_g(x)&=-\sqrt{\Wp(x)\Wm(x)} \tag{8}\label{8} \end{align}
for $x<0$ is then represented as two pieces \begin{align} f_{g1}(\alpha)&=-\frac{\tfrac\alpha2}{\sin\tfrac\alpha2} \tag{9}\label{9} ,\\ x(\alpha)&= -\frac{\alpha}{2\sin\tfrac\alpha2} \cdot\exp(-\tfrac\alpha2\,\cot\tfrac\alpha2) ,\quad \alpha>0 \tag{10}\label{10} ,\\ \text{and }\quad f_{g2}(a)&=\frac{\sqrt{a}\ln a}{1-a} \tag{11}\label{11} ,\\ x(a)&=\frac{\ln a}{1-a}\cdot a^{\tfrac1{1-a}} ,\quad a\in[0,1] \tag{12}\label{12} ,\\ \lim_{\alpha=0}x(\alpha)&= \lim_{a=1}x(a)= -\tfrac1\e \tag{13}\label{13} ,\\ \lim_{\alpha=0}f_{g1}(\alpha)&= \lim_{a=1}f_{g2}(a)=-1 \tag{14}\label{14} . \end{align}

Omitting details of calculation, this leads to,

\begin{align} \left. \frac{d f_{g1}(\alpha)/d\alpha}{dx(\alpha)/d\alpha} \right|_{\alpha=0} &= \left. \frac{d f_{g2}(a)/da}{dx(a)/da} \right|_{a=1} =\frac13\e \tag{15}\label{15} ,\\ \left. \frac{d^2 f_{g1}(\alpha)/d\alpha^2}{d^2x(\alpha)/d\alpha^2} \right|_{\alpha=0} &= \left. \frac{d^2 f_{g2}(a)/da^2}{d^2x(a)/da^2} \right|_{a=1} =\frac13\e \tag{16}\label{16} , \end{align}

that means that $f_g(x)$ is indeed $C^2$-continuous at $x=-\tfrac1\e$.

And again, exactly as in the case of the arithmetic mean, the value of first and second derivation at this point is the same.

$\endgroup$

g.kov
  • 13,581