0

Let $X_i \sim \exp(\lambda)$ for $i= 1, ..., N$ and i.i.d. Hence $\mathbb{E}(X_i) = \frac{1}{\lambda}$. What can we say about $\mathbb{E} \left(\frac{1}{\sum_{i=1}^N X_i}\right)$?

I think that $\sum_{i=1}^N X_i \sim \exp(\lambda)$, but I am not sure we can say $\frac{1}{\sum_{i=1}^N X_i} \sim \exp(\lambda)$

StubbornAtom
  • 17,052
J.Doe
  • 35

0 Answers0