I assume that by $A^B$ you mean the set of all functions $B\to A$. So elements of $(A^B)^C$ are all functions $C\to A^B$. Since each set has only two elements then we can list all those functions. First of all if $f:C\to A^B$ then for any $x\in C$ we have that $f(x)$ is a function $B\to A$. And so we can evaluate $f(x)$ on $y\in B$. And in fact $f$ is uniquely determined by values $f(x)(y)$. And so all possible functions $C\to A^B$ are the following:
$$f_1(0)(0)=0,\ \ f_1(0)(1)=0,\ \ f_1(1)(0)=0,\ \ f_1(1)(1)=0$$
$$f_2(0)(0)=0,\ \ f_2(0)(1)=0,\ \ f_2(1)(0)=0,\ \ f_2(1)(1)=1$$
$$f_3(0)(0)=0,\ \ f_3(0)(1)=0,\ \ f_3(1)(0)=1,\ \ f_3(1)(1)=0$$
$$f_4(0)(0)=0,\ \ f_4(0)(1)=0,\ \ f_4(1)(0)=1,\ \ f_4(1)(1)=1$$
$$f_5(0)(0)=0,\ \ f_5(0)(1)=1,\ \ f_5(1)(0)=0,\ \ f_5(1)(1)=0$$
$$f_6(0)(0)=0,\ \ f_6(0)(1)=1,\ \ f_6(1)(0)=0,\ \ f_6(1)(1)=1$$
$$f_7(0)(0)=0,\ \ f_7(0)(1)=1,\ \ f_7(1)(0)=1,\ \ f_7(1)(1)=0$$
$$f_8(0)(0)=0,\ \ f_8(0)(1)=1,\ \ f_8(1)(0)=1,\ \ f_8(1)(1)=1$$
$$f_9(0)(0)=1,\ \ f_9(0)(1)=0,\ \ f_9(1)(0)=0,\ \ f_9(1)(1)=0$$
$$f_{10}(0)(0)=1,\ \ f_{10}(0)(1)=0,\ \ f_{10}(1)(0)=0,\ \ f_{10}(1)(1)=1$$
$$f_{11}(0)(0)=1,\ \ f_{11}(0)(1)=0,\ \ f_{11}(1)(0)=1,\ \ f_{11}(1)(1)=0$$
$$f_{12}(0)(0)=1,\ \ f_{12}(0)(1)=0,\ \ f_{12}(1)(0)=1,\ \ f_{12}(1)(1)=1$$
$$f_{13}(0)(0)=1,\ \ f_{13}(0)(1)=1,\ \ f_{13}(1)(0)=0,\ \ f_{13}(1)(1)=0$$
$$f_{14}(0)(0)=1,\ \ f_{14}(0)(1)=1,\ \ f_{14}(1)(0)=0,\ \ f_{14}(1)(1)=1$$
$$f_{15}(0)(0)=1,\ \ f_{15}(0)(1)=1,\ \ f_{15}(1)(0)=1,\ \ f_{15}(1)(1)=0$$
$$f_{16}(0)(0)=1,\ \ f_{16}(0)(1)=1,\ \ f_{16}(1)(0)=1,\ \ f_{16}(1)(1)=1$$
resulting in a total of $16$ functions. This agrees with our understanding of cardinalities: $|(A^B)^C|=|A^B|^{|C|}=(|A|^{|B|})^{|C|}$ which evaulates to $(2^2)^2=16$.
There's a pattern here. In fact each function $f:C\to A^B$ has a corresponding $g_f:C\times B\to A$ function:
$$g_f(x,y):=f(x)(y)$$
And this correspondence $(A^B)^C\to A^{C\times B}$, $f\mapsto g_f$ is a bijection, similarly to number exponentiation. And finding all functions $C\times B\to A$ is arguably easier.