Question: Find the value of $$\lim_{n\to\infty}\sum_{k=1}^n \dfrac{1\cdot 3\cdot 5\cdots (2k-1)}{3\cdot 6\cdot 9\cdots 3k}~.$$
My work: Let $~~a_n=\dfrac{1\cdot 3\cdot 5\cdots (2k-1)}{3\cdot 6\cdot 9\cdots 3k}=\dfrac{1\cdot 2\cdot 3\cdots 2k}{3^k(1\cdot 2\cdot 3\cdots k)\cdot 2^k(1\cdot 2\cdot 3\cdots k)}=\dfrac{(2k)!}{6^k\cdot(k~!)^2}~.$
Hence our problem becomes $$L=\lim_{n\to\infty}~\sum_{k=1}^n \dfrac{1\cdot 3\cdot 5\cdots (2k-1)}{3\cdot 6\cdot 9\cdots 3k}~=\lim_{n\to\infty}~\sum_{k=1}^n\dfrac{(2k)!}{6^k\cdot(k~!)^2}=\lim_{n\to\infty}~\sum_{k=1}^n \binom {2k}k \dfrac{1}{6^k}.$$
Now we know that $~(1-4x)^{-1/2}=\sum_{k=0}^\infty \binom {2k}k x^k~$, then $$L=\lim_{n\to\infty}~\left[-1+\sum_{k=0}^n \binom {2k}k \left(\dfrac{1}{6}\right)^k\right]=-1+\lim_{n\to\infty}\sum_{k=0}^n \binom {2k}k \left(\dfrac{1}{6}\right)^{k}=-1+\left(1-\frac 46\right)^{-1/2}=~\sqrt 3 -1~.$$
Is the whole process described here is okay now ?
Special thanks to @Integrand & Z Ahmed