If I define $\gcd(a_1,...,a_n)$ be the greatest positive common divisor or $a_1,...,a_n$.
How can I show $\gcd(a_1,...,a_n)=\gcd(\gcd(a_1,...,a_{n-1}),a_n)$?
The equality is trivial if we have $\forall $ common divisor $c$ of $a_1,...,a_n$, $c\mid \gcd(a_1,...,a_n)$. But I think this is a consequence of the above proposition by extending the result from the case $n=2$.
It is easy to show $\gcd(\gcd(a_1,...,a_{n-1}),a_n)\le \gcd(a_1,...,a_n),$ but I got stuck showing the another side. Any suggestion will be appreciated.