I want to show that $f:\Bbb{R}^n\to\Bbb{R},\; x=(x_1,\dots,x_n)\mapsto\log(\sum_{1\leq i\leq n}e^{x_i})$ is convex. This is my attempt:
Let $x,y\in\Bbb{R}^n,\lambda\in[0,1]$.
I need to show that $f(\lambda x + (1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y):$
$f(\lambda x + (1-\lambda)y)=f\left( \begin{array}{c} \lambda x_1+(1-\lambda)y_1 \\ \dots\\ \lambda x_n+(1-\lambda)y_n \end{array} \right)=\log(e^{\lambda x_1+(1-\lambda)y_1}+\dots+e^{\lambda x_n+(1-\lambda)y_n})$
$=\log(e^{\lambda x_1}e^{(1-\lambda)y_1}+\dots+e^{\lambda x_n}e^{(1-\lambda)y_n})$
$\leq\log((e^{\lambda x_1}+e^{\lambda x_2}+\dots+e^{\lambda x_n})(e^{(1-\lambda) y_1}+e^{(1-\lambda) y_2}+\dots+e^{(1-\lambda) y_n}))$
$=\log(e^{\lambda x_1}+e^{\lambda x_2}+\dots+e^{\lambda x_n})+\log(e^{(1-\lambda) y_1}+e^{(1-\lambda) y_2}+\dots+e^{(1-\lambda) y_n})$
$\leq\log((e^{x_1}+e^{x_2}+\dots+e^{x_n})^\lambda)+\log((e^{ y_1}+e^{ y_2}+\dots+e^{ y_n})^{1-\lambda})$
$=\lambda\log(e^{x_1}+e^{x_2}+\dots+e^{x_n})+(1-\lambda)\log(e^{ y_1}+e^{ y_2}+\dots+e^{ y_n})$
$=\lambda f(x)+(1-\lambda) f(y)$
$\implies f$ is convex
Please let me know if I can make any improvements on this or if something is wrong. Thanks